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Abstract

Video frame interpolation algorithms predict intermediate
frames to produce videos with higher frame rates and smooth
view transitions given two consecutive frames as inputs. We
propose that: synthesized frames are more reliable if they
can be used to reconstruct the input frames with high qual-
ity. Based on this idea, we introduce a new loss term, the
cycle consistency loss. The cycle consistency loss can bet-
ter utilize the training data to not only enhance the interpo-
lation results, but also maintain the performance better with
less training data. It can be integrated into any frame inter-
polation network and trained in an end-to-end manner. In ad-
dition to the cycle consistency loss, we propose two exten-
sions: motion linearity loss and edge-guided training. The
motion linearity loss approximates the motion between two
input frames to be linear and regularizes the training. By ap-
plying edge-guided training, we further improve results by in-
tegrating edge information into training. Both qualitative and
quantitative experiments demonstrate that our model outper-
forms the state-of-the-art methods. The source codes of the
proposed method and more experimental results will be avail-
able at https://github.com/alex04072000/CyclicGen.

Introduction
High-frame-rate videos with temporally coherent content
are preferable, but acquiring such videos often requires
higher power consumption and more storage. To compro-
mise between the user experience and the acquiring cost,
video frame interpolation, e.g., (Liu et al. 2017; Niklaus,
Mai, and Liu 2017b), has drawn increasing attention in the
field of computer vision and video processing. It aims at
upscaling video frame rates by synthesizing spatially and
temporally consistent intermediate frames, and can produce
high-quality videos with smooth view transition.

Convolutional neural networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012) have been employed in many
modern methods for video frame interpolation (Niklaus,
Mai, and Liu 2017a; 2017b; Liu et al. 2017; Long et al.
2016). These CNN-based methods often integrate motion
prediction into video pixel generation, and can work with-
out using hard-to-get dense flow fields as training data. Em-
powered by CNNs, these methods show excellent abilities
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Figure 1: Given three consecutive frames, I0, I1, and I2, the
proposed CNN-based model aims to produce high-quality
interpolated frames, I ′0.5 and I ′1.5. To this end, the model
maps the given frames to the interpolated frames and then
map them back by constructing I ′′1 through interpolating be-
tween I ′0.5 and I ′1.5. The proposed cycle consistency loss fa-
cilitates model learning by enforcing the similarity between
I1 and I ′′1 .

to learn the mapping between two consecutive frames and
the intermediate frame, and alleviate the problems caused by
occlusions and varying lighting conditions. Despite the en-
couraging progress, video frame interpolation still remains
quite challenging: The interpolated frames are usually over-
smoothed/blurred and have artifacts (Liang et al. 2017). This
situation becomes even worse in image regions with large
motions or rich textures.

This paper addresses the aforementioned issues. Our idea
is built on the reverse mapping from the interpolated frames
to the given frames. Consider a model that is derived to
generate the interpolated frame by taking two consecu-
tive frames as inputs. If the interpolated frames are over-
smoothed or have artifacts, the reverse mapping is unlikely
to be well performed by the same model. Inspired by this
observation, we implement forward-backward consistency
by introducing the cycle consistency loss for video interpo-
lation. Specifically, the model maps the input frames to the
interpolated frames, and then maps them back. The cycle
consistency loss enforces the similarity between the input
frames and the mapped-back frames. Using the cycle con-
sistency loss, the learned model can implicitly address the



problems of over-smoothed results and artifacts. In addition
to improving performance, this loss constrains the training
process, and makes the resultant model more robust even
when fewer training data are available. Figure 1 illustrates
the basic idea of the cycle consistency loss for video inter-
polation.

Two extensions, motion linearity loss and edge guided
training, are further proposed to address the difficulties of
synthesizing frames in the regions with large motions and
rich textures, respectively. The motion linearity loss assumes
that the view transition is linear with respect to time over
consecutive frames in a short period of time. The assumption
effectively regularizes network training, and improves the
interpolation results. Motivated by the quality degradation
of the interpolated frames in highly textured areas, we aug-
ment the input with edge information. The generated frames
are then improved by better preserving the edge structure.
The two extensions complement the cycle consistency loss,
and result in considerable performance gains.

We evaluate the performance of our method on three
benchmarks, including the UCF101 dataset (Soomro, Za-
mir, and Shah 2012), a high-quality video, See You
Again, (Niklaus, Mai, and Liu 2017b), and the Middlebury
optical flow dataset (Baker et al. 2011). The experimental
results show that our method performs favorably against the
state-of-the-art methods. We also conduct ablation studies to
analyze the impact of the proposed cycle consistency loss,
motion linearity loss, and edge guided training individually.
Additionally, we demonstrate that the cycle consistency loss
makes the most of training data, and results in a model ro-
bust to the issue of few training data.

Related Work
This section reviews the topics relevant to this work. We first
describe previous methods for video frame interpolation and
contrast the proposed method with them. Next, we review
the applications of the cycle constraint that the proposed cy-
cle consistency loss roots from.

Video Frame Interpolation
Conventional methods (Baker et al. 2011; Werlberger et al.
2011; Yu et al. 2013) for frame interpolation usually es-
timate dense motion correspondences between consecutive
frames via stereo matching or optical flow prediction, and
can synthesize intermediate frames based on the estimated
correspondences. Inheriting from correspondence estima-
tion, these methods induce computation-intensive optimiza-
tion and are less efficient. Furthermore, these approaches
tend to produce artifacts around object boundaries.

CNNs have been shown effective in optical flow estima-
tion such as (Bailer, Taetz, and Stricker 2015; Dosovitskiy
et al. 2015; Gadot and Wolf 2016; Güney and Geiger 2016;
Teney and Hebert 2016; Tran et al. 2016; Weinzaepfel et
al. 2013). These CNN-based methods for flow field predic-
tion need training data in the form of dense correspondences,
which are quite hard to annotate. Besides, since their goal is
to generate optical flow, the interpolated frames based on
optical flow often have artifacts.

Some frame synthesis methods leverage CNNs to directly
generate images (Goodfellow et al. 2014) and videos (Von-
drick, Pirsiavash, and Torralba 2016; Xue et al. 2016).
Thus, they do not use dense correspondences as training
data but the ground-truth intermediate frames. However,
these methods still suffer from blurred results and artifacts.
Liu et al. (Liu et al. 2017) addressed the problem of blurred
results by referring to coherent regions of pixels in exist-
ing frames and employing a network layer regarding optical
flow. Their method makes the synthesized frames sharper,
but the problem of artifacts remains unsolved. Other meth-
ods (Niklaus, Mai, and Liu 2017a; 2017b) combine motion
estimation and frame synthesis into a single convolution
step. They estimate spatially-varying kernels for each out-
put pixel, and apply them to input frames for frame interpo-
lation. Despite the effectiveness, these methods need pixel-
specific kernel estimation, and consume high computation
power and storage usage, especially for high-resolution
frame synthesis.

The current state-of-the-art methods (Jiang et al. 2018;
Niklaus and Liu 2018) employ CNNs to predict bi-
directional optical flow between the input images, and use
another CNN model to synthesize interpolated images based
on the predicted flow. However, these methods either require
additional training data for optical flow estimation or need
substantial training time.

Unlike most existing methods that enhance frame inter-
polation by designing more powerful deep features or ar-
chitectures, our method mitigates the aforementioned draw-
backs by utilizing the cycle consistency loss with two ex-
tensions. The advantages of our method are three-fold. First,
our method achieves superior performance to the state-of-
the-arts by addressing the issues of blurry results and arti-
facts. Second, while existing methods require more training
data to learn powerful features or networks, we show that
our method is more robust against the issue of insufficient
training data. Third, using the cycle consistency loss does
not increase the model parameters. Thus, both the training
and inference costs remain almost unchanged. These nice
properties distinguish our method from prior work.

Cycle Constraint
Using cycle constraints to regularize structured predictions
has been explored in the literature. For language trans-
lation, it has been shown effective to improve transla-
tions by using back translation and reconciliation (Bris-
lin 1970). For visual tracking, enforcing forward-backward
consistency is helpful in reaching better results (Sun-
daram, Brox, and Keutzer 2010). Higher-order cycle con-
sistency has been exploited in diverse vision tasks, such
as structure from motion (Zach, Klopschitz, and Pollefeys
2010), 3D shape matching (Huang and Guibas 2013), co-
segmentation (Wang, Huang, and Guibas 2013), dense se-
mantic alignment (Zhou et al. 2015; 2016), depth estima-
tion (Godard, Mac Aodha, and Brostow 2017), and image-
to-image translation (Zhu et al. 2017). For deep learning,
research efforts (Zhou et al. 2016; Godard, Mac Aodha, and
Brostow 2017; Zhu et al. 2017) use the concept of cycle con-
sistency to regularize the training of deep models.
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Figure 2: Approach overview. Our approach implements a two-stage optimization process. (a) At the first stage, the baseline
model f is pre-trained. (b) At the second stage, the baseline model is duplicated three times. The four models share weights
and are fine-tuned by taking into account the proposed cycle consistency loss Lc, motion linearity loss Lm, and edge guided
training. After training, the optimized model f performs video frame interpolation at the inference phase. See text for details.

To the best of our knowledge, this work makes the first
attempt to improve video frame interpolation by leveraging
cycle consistency. We design a two-stage optimization pro-
cedure so that the interpolation model shared by both map-
ping directions in the cycle constraint can be learned stably.
It turns out that our method can greatly improve the quality
of interpolation without incurring extra learnable parame-
ters. In addition, the concept of cycle consistency is extended
by taking application-specific knowledge into account, and
can address the degraded performance in regions with large
motions or rich textures.

Proposed Approach
Given a set of training data D = {In,0, In,1, In,2}Nn=1,
each of which is a triplet containing three consecutive video
frames, we aim to learn a deep model that takes two con-
secutive frames as inputs and can predict their interme-
diate frame of high quality. Applying the learned model
to all consecutive frames of a video doubles its frame
rate. Repeatedly applying the model k times upscales the
frame rate by a factor of 2k. For example, given the in-
put frames S = {I0, I1, I2, ..., IN}, our model first gener-
ates frames S′ = {I0.5, I1.5, I2.5, ..., IN−0.5} for 2× inter-
polation. Then, it is applied again to S ∪ S′ and produces
S′′ = {I0.25, I0.75, ..., IN−0.25} for 4× interpolation.

Our method implements a two-stage training process. Its
network architecture is shown in Figure 2. Our method is
featured with three newly proposed components, i.e., the cy-
cle consistency loss, motion linearity loss, and edge guided
training. The cycle consistency loss boosts the model to pro-
duce plausible intermediate frames so that these frames can
be used to reversely reconstruct the given frames. The mo-
tion linearity loss regularizes the estimation of motions in
training. Edge guided training helps preserve the edge struc-
ture. We will describe the three components below.

Cycle Consistency Loss Lc
Conventional loss functions, such as the `1-norm loss, are
not fully consistent with human perception when assess-
ing the quality of interpolated frames. Minimizing the `1-
norm loss often leads to over-smoothed frames or artifacts,
as shown in Figures 3(a) and 3(b), since these unfavorable
effects only yield subtle increase in the loss. Motivated by
the observation that the over-smoothed interpolated frames
with artifacts cannot well reconstruct the original frames via
the same interpolation model, we propose the cycle consis-
tency loss Lc, which ensures the quality of reverse frame
generation, i.e., generating the original frames with the in-
terpolated frames as input. In this way, these unfavorable
effects can be alleviated implicitly by using the cycle con-
sistency loss, as shown in Figure 3(c).

Consider a baseline interpolation model that takes two
consecutive frames as inputs and synthesizes the interme-
diate frame between them. The baseline model can be ap-
plied to each triplet n, (In,0, In,1, In,2), in the training setD,
where In,0 and In,2 serve as the input while In,1 is the de-
sired output. Since each triplet acts as the input to the model,
we sometimes omit the index n for brevity in the paper. Sev-
eral existing methods, such as AdaConv (Niklaus, Mai, and
Liu 2017a) and SepConv (Niklaus, Mai, and Liu 2017b), can
serve as the baseline model. In this work, we choose deep
voxel flow (DVF) (Liu et al. 2017) as the baseline for its
simplicity and good performance. The DVF model learns to
synthesize the in-between frame from the input frames by
warping the input frames with the predicted flow map and
mask. Refer to the original paper of DVF (Liu et al. 2017)
for its details.

To stably integrate the cycle consistency loss into model
learning and not to increase the number of the learnable pa-
rameters in the model, we develop a two-stage training pro-
cedure. At the first stage, the baseline model is learned with
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Figure 3: (a) Three input frames, I0, I1, and I2, for inter-
polation. (b) Two interpolated frames, I ′0.5 and I ′1.5, by us-
ing the `1-norm loss. The reconstructed I1, i.e., I ′′1 , is ob-
tained by applying the same interpolation model to I ′0.5 and
I ′1.5. As can be observed, the issues of artifacts (the region
in the yellow box) and over-smoothed results (the region in
the blue box) are present in both the interpolated frames and
the reconstructed frame. (c) The same figures as those in (b)
except the cycle consistence loss is integrated into the loss
function for learning the interpolation model. The issues of
artifacts and over-smoothed results are greatly alleviated.

each training triplet by using the `1-norm loss Lr where r
stands for reconstruction, i.e.,

Lr =

N∑
n=1

||f(In,0, In,2)−In,1||1 =

N∑
n=1

||I ′n,1−In,1||1, (1)

where f is the baseline model.
At the second stage, we duplicate the pre-trained model

f three times as shown in Figure 2 for introducing the cycle
consistency loss. For a triplet (I0, I1, I2), the first two dupli-
cated models respectively take (I0, I1) and (I1, I2) as input,
and generate intermediate frames, I ′0.5 and I ′1.5, which then
serve as the input to the third duplicated model to produce
the reconstructed I1, i.e., I ′′1 . The cycle consistency loss
minimizes the difference between the input frames I1 and its
reconstructed version I ′′1 . Specifically, the learnable parame-
ters of the baseline model f and its three duplicated counter-
parts are shared. At the second stage, the four shared-weight
models are trained in an end-to-end manner with the follow-
ing objective function:

L = Lr +Lc =

N∑
n=1

||I ′n,1 − In,1||1 + ||I ′′n,1 − In,1||1, (2)

where I ′′n,1 = f(I ′n,0.5, I
′
n,1.5), I

′
n,0.5 = f(In,0, In,1) and

I ′n,1.5 = f(In,1, In,2) are the generated frames by the three
shared-weight models, respectively.
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Figure 4: Interpolation errors of pixels on the DVF testing
set. Pixels are divided into ten bins according to their gra-
dient magnitudes. (a) Histogram of gradient magnitudes. (b)
Average interpolation error for pixels in each bin. The larger
the gradient, the higher the interpolation error.

Motion Linearity Loss Lm
Regions with large motions cause dramatic appearance
change. Thereby, interpolation on such regions is quite dif-
ficult. To address this issue, we assume the time interval be-
tween two consecutive frames is short enough so that the
motion is linear between the two frames. This assumption
helps reduce the uncertainty of motion and alleviate approx-
imation errors in most cases.

Based on the assumption, the motion linearity loss Lm is
developed to regularize the optical flow estimation in a self-
supervised fashion. In the two-stage training process, the
time intervals between consecutive frames at the first stage
are twice as long as those at the second stage. With the mo-
tion linearity assumption, the model pre-trained at the first
stage generates flow fields with magnitudes twice as large as
the duplicated models at the second stage.

In Figure 2, blue blocks represent the estimated flow maps
upon which the motion linearity loss Lm is applied. Specif-
ically, this loss is defined by

Lm =

N∑
n=1

‖Fn,0→2 − 2 · Fn,0.5→1.5‖22, (3)

where F denotes the flow map and its subscript indicates its
data index and the time interval of its input frames.

Edge-guided Training E
Interpolation on highly textured regions is difficult. To ver-
ify this observation, as shown in Figure 4, we applied the
DVF model (Liu et al. 2017) and evaluated its performance
on the testing set collected in (Liu et al. 2017) by using the
metric, mean square error (MSE). By uniformly dividing the
interval of gradient magnitudes, we classified pixels into ten
bins according to their gradient magnitudes. Figures 4(a) and
4(b) respectively show the histogram of gradient magnitudes
and the interpolation error in each bin. It can be observed
that pixels with larger gradients tend to have large errors. In-
spired by this observation, we implement edge-guided train-
ing E where the edge information is added into the input to
the model, and can improve frame interpolation by preserv-
ing the edge structure.

To compute the edge map of an image, we tried sev-
eral algorithms, including (Canny 1986; Kanopoulos, Vas-
anthavada, and Baker 1988; Marr and Hildreth 1980; Xie



and Tu 2015). We ended up with using the CNN-based
model, holistically-nested edge detection (HED) (Xie and
Tu 2015), for its performance. In addition, by using CNN-
based HED, our method remains end-to-end trainable. As
shown in Figure 2, we obtain the edge maps for the two in-
put frames to the model f via HED, and augment them as
part of the input to the model.

Implementation Details
Our method is built on the top of DVF (deep voxel flow)
model (Liu et al. 2017) and shares the same setting with it.
DVF employs a CNN model to estimate the motion between
two consecutive frames and copies pixels from the two
frames accordingly to reconstruct the intermediate frame.
The optimization is performed with two stages, whose ob-
jective functions are respectively specified below

Ls1 = Lr and Ls2 = Lr + λcLc + λmLm, (4)

where Lr, Lc, and Lm are defined in Eq. (1), Eq. (2), and
Eq. (3), respectively. The weights λc and λm are determined
empirically using a validation set. λc = 1 and λm = 0.1 are
used in all experiments. Every component of our network is
differentiable. Thus, our model is end-to-end trainable. The
optimization is performed by Adam optimizer (Kingma and
Ba 2015). The batch size is set to 8, while the learning rate is
fixed to 0.0001 during the first stage and reduced to 0.00001
during the second stage optimization.

We had tried to train the model in an end-to-end manner
without the first stage. The performance of the network is
less reliable due to the lack of the better initialization ob-
tained in the first stage. The result reveals that the initializa-
tion from the first stage is beneficial in our case. We had also
tried the cycle consistency with a loop of three steps. How-
ever, it only resulted in a subtle improvement but made the
network much more complex during training. Thus, we only
use the two-step cycle in this work.

Experiments
In this section, we report the datasets used in the experi-
ments, ablation studies and comparisons with the state of the
arts. We also discuss the limitations of the proposed method.

Datasets
We train our model using the training set of the UCF101
dataset (Soomro, Zamir, and Shah 2012). A training video
is split into many triplets, each containing three consecu-
tive frames. For each triplet, the middle frame serves as
the ground truth while the other two are inputs. To have
more challenging samples for training, we select the triplets
with more obvious motion by choosing those with lower
PSNR values between input frames. Approximately 280,000
triplets are selected to form the training set. For reducing
memory consumption, all frames are scaled to the resolution
of 256× 256.

We test the proposed network on several datasets, in-
cluding UCF101 (Soomro, Zamir, and Shah 2012), Middle-
bury flow benchmark (Baker et al. 2011), and a high-quality
YouTube video: See You Again by Wiz Khalifa. For UCF101

PSNR SSIM
Baseline (DVF) 35.89 0.945
+ Cycle 36.71 (+0.82) 0.950 (+0.005)
+ Cycle + Motion 36.85 (+0.96) 0.950 (+0.005)
+ Cycle + Edge 36.86 (+0.97) 0.952 (+0.007)
full model 36.96 (+1.07) 0.953 (+0.008)

Table 1: Ablation studies. The numbers in parenthesis indi-
cate improvement against the baseline. (Cycle: cycle consis-
tency loss; Motion: motion linearity loss; Edge: edge-guided
training. )

Training size Baseline (DVF) Ours (Lc + Lm)
1 35.98 36.85
1/10 35.71 (-0.27) 36.83 (-0.02)
1/100 35.43 (-0.55) 36.70 (-0.15)
1/1000 34.42 (-1.56) 36.10 (-0.75)

Table 2: Evaluation of models with different training data
sizes. The average PSNR (dB) for the UCF101 testing set is
reported. The numbers in parenthesis indicate performance
drop compared with the same model trained with full data.

and See You Again, in every triple, the first and third frames
are used as inputs to predict the second one. The UCF101
testing set consists of 379 sequences provided by (Liu et al.
2017). For the Middlebury flow benchmark, we submit our
interpolation results of the eight test sequences to the eval-
uation website. For quantitative evaluation, we report both
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) between the synthesized and real frames.

Ablation Studies
For understanding the performance of the proposed compo-
nents, we conduct ablation studies on the UCF101 testing
set provided by DVF. As our model is based on DVF, we
consider it as the baseline and compare its results with the
ones of applying the proposed components, including the cy-
cle consistency loss, motion linearity loss, and edge-guided
training, to investigate effectiveness of each component.

Cycle Consistency Loss Lc We first verify whether the
idea of cyclic generation improves video interpolation. For
that, we compare the results of the baseline with and without
the cycle consistency loss Lc. The first and second rows in
Table 1 clearly indicate that the cycle consistency loss sig-
nificantly improves the quality of the results, with 0.82dB
improvement in terms of PSNR. Figure 5 (b) and (c) com-
pare the results without and with Lc on a couple of examples
visually. With the help of the cycle consistency loss, the syn-
thesized frames have less visual artifacts (such as the “light
streaks” in the baseline results) and exhibit characteristics
more similar to the original frames.

Motion Linearity Loss Lm Table 1 reports that the mo-
tion linearity loss brings an additional 0.14dB gain on the
top of cyclic generation. It is because the assumption of lin-
ear motion helps restrict frame synthesis within the subspace
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Figure 5: Visual comparisons for the ablation studies.
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Figure 6: Visual comparisons for the motion linearity loss.

with more plausible motion. Figure 5 and Figure 6 give vi-
sual examples. As an example, the hand in Figure 6(d) looks
sharper with the help of the motion linearity assumption.

Edge-Guided Training E As shown in Table 1, edge-
guided training gains 0.15dB to further improve the perfor-
mance of cyclic generation. It is because the information
provided by edge maps helps guide interpolation and im-
prove performance in the areas with strong gradients. Fig-
ure 5 and Figure 7 show examples where edge-guided train-
ing helps. For example, the dashed arc in the free throw lane
becomes visible in Figure 7(d) with the help of edge-guided
training.

Inputs

(a)

Ground truth

(b)

Baseline

(DVF)

(c)

+ Cycle

(d)

+ Cycle 

+ Edge

Figure 7: Visual comparisons for the edge-guided training.

Impact of the Number of Training Samples Our cyclic
frame generation method uses the generated frames as train-
ing data for the second-stage training. It has the potential to
utilize the data more effectively. We conduct experiments to
verify the point by varying the amount of training data. The
full UCF101 training data contain approximately 280,000
triplets. We reduce the training data to 1/10, 1/100 and
1/1000 of the full data by randomly sampling triplets. Ta-
ble 2 reports the performance of the baseline method (DVF)
and our method (Lc+Lm) with different amounts of training
data. It is clear that the proposed method maintains perfor-
mance better with less training data. For example, when us-
ing 1/10 of the training data, our method almost performs as
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Figure 8: Visual comparisons for examples from UCF101.

UCF101 See You Again
PSNR SSIM PSNR SSIM

DVF 35.89 0.945 40.15 0.958
SepConv 36.49 0.950 41.01 0.968
Ours 36.96 0.953 41.67 0.968

Table 3: Quantitative comparisons on the UCF101 testing
set and the high-quality video See You Again.

well as the one using full data by only dropping 0.02dB. For
the same amount of data, the baseline method has already
dropped 0.27dB. When using only 1/1000 of the training
data (meaning merely 280 triplets for training), our method
can still keep very good performance (36.10dB), even better
than the baseline method trained with full data (35.98dB).
The experiment shows that our method utilizes the training
data very well. It suffers less from over-fitting and is robust
even with little training data.

Comparisons with State-of-the-Art Methods
We compare our method mainly with two state-of-
the-art methods, separable adaptive convolution (Sep-
Conv) (Niklaus, Mai, and Liu 2017b) and deep voxel flow
(DVF) (Liu et al. 2017), with publicly available executa-
bles. While evaluating on the Middlebury flow benchmark,
we also compare with the top performance methods listed
in the benchmark website. The supplementary video shows
interpolation results of our method for a 8× frame rate.

UCF101 For UCF101, we compute both PSNR and SSIM
using the motion masks provided by (Liu et al. 2017). As re-
ported in Table 3, for UCF101, our method outperforms both
DVF and SepConv, by 1.07dB and 0.47dB in PSNR respec-
tively. Figure 8 shows visual comparisons of these methods.

See You Again For testing generalization of the model,
we apply the model trained on UCF101 to a high-quality

YouTube video, See You Again. It has 5,683 frames with the
resolution 960× 540. We take odd-number frames as inputs
and synthesize the even-number frames. The right part of Ta-
ble 3 reports PSNR and SSIM values of compared methods
on See You Again. Our method outperforms the others.

Middlebury To better accommodate the large appear-
ance difference between UCF101 and Middlebury, we fine-
tune our model using the training set provided by Mid-
dlebury, which contains only 168 frames. Table 4 reports
the interpolation errors (IE) of our model and five top-
performance methods in Middlebury’s list on the eight test-
ing sequences of the benchmark. The compared methods
include (1) synthesis-based methods which directly gener-
ate interpolated frames: CtxSyn (Niklaus and Liu 2018),
SepConv (Niklaus, Mai, and Liu 2017b), and SuperSlomo
(Jiang et al. 2018); and flow-based methods which utilize op-
tical flows for frame interpolation: MDP-Flow2 (Xu, Jia, and
Matsushita 2012) and DeepFlow (Weinzaepfel et al. 2013).
At the time when the paper is submitted, CtxSyn ranks the
first and all five compared methods are among top six. Our
model achieves the best average performance and owns the
best records for 5 out of all 8 sequences. Note that the last
four sequences contain real images. It indicates that our
method performs particularly well on real-scene sequences.
Fine-tuning with 168 frames also shows that our approach
performs well with little training data. Figure 9 shows visual
comparisons on examples from the Middlebury benchmark.

Limitations

Although our method provides good improvement, it has
some limitations. First, dealing with the areas with large mo-
tions remains challenging to our method. As shown in Fig-
ures 5 and 9, although the cycle consistency and motion lin-
earity losses jointly alleviate the interpolation errors, there
are still interpolation errors in the regions with large mo-
tions. Second, the motion linearity loss assumes linear mo-
tion, but the linearity assumption may not hold in videos at
very low frame rates, which likely would cause interpolation
errors. In addition, our method performs repeated interpola-
tion. Hence, it only upscales the frame rate by a factor of
2N , instead of an arbitrary frame rate that a user desires.

Conclusion

We present a novel loss, the cycle consistency loss, which
can be integrated with existing video frame interpolation
methods and trained in an end-to-end manner. By ensuring
the interpolated frames can be used to reconstruct the input
frames, our method synthesizes more plausible frames pos-
sessing similar characteristics with the original frames. Ad-
ditionally, we propose two extensions, motion linearity loss
and edge guided training, to regularize the training proce-
dure and further improve model performance. The proposed
approach better utilizes the training data, not only enhanc-
ing the interpolation results, but also reaching better perfor-
mance with less training data.



AVERAGE Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen
all disc. unt. all disc. unt. all disc. unt. all disc. unt. all disc. unt. all disc. unt. all disc. unt. all disc. unt. all disc. unt.

Ours 4.20 6.16 1.97 2.26 3.32 1.42 3.19 4.01 2.21 2.76 4.05 1.62 4.97 5.92 3.79 8.00 9.84 3.13 3.36 5.65 2.17 4.55 9.68 1.42 4.48 6.84 1.52
CtxSyn 5.28 8.00 2.19 2.24 3.72 1.04 2.96 4.16 1.35 4.32 3.42 3.18 4.21 5.46 3.00 9.59 11.9 3.46 5.22 9.76 2.22 7.02 15.4 1.58 6.66 10.2 1.69
SuperSlomo 5.31 8.39 2.12 2.51 4.32 1.25 3.66 5.06 1.93 2.91 4.00 1.41 5.05 6.27 3.66 9.56 11.9 3.30 5.37 10.2 2.24 6.69 15.0 1.53 6.73 10.4 1.66
SepConv 5.61 8.74 2.33 2.52 4.83 1.11 3.56 5.04 1.90 4.17 4.15 2.86 5.41 6.81 3.88 10.2 12.8 3.37 5.47 10.4 2.21 6.88 15.6 1.72 6.63 10.3 1.62
MDP-Flow2 5.83 9.69 2.15 2.89 5.38 1.19 3.47 5.07 1.26 3.66 6.10 2.48 5.20 7.48 3.14 10.2 12.8 3.61 6.13 11.8 2.31 7.36 16.8 1.49 7.75 12.1 1.69
DeepFlow 5.97 9.79 2.05 2.98 5.67 1.22 3.88 5.78 1.52 3.62 5.93 1.34 5.39 7.20 3.17 11.0 13.9 3.63 5.91 11.3 2.29 7.14 16.3 1.49 7.80 12.2 1.70

Table 4: Quantitative comparisons on the Middlebury benchmark. The table reports the interpolation errors. disc.: regions with
discontinuous motion. unt.: textureless regions.

(a) Ground truth (b) CtxSyn (c) SuperSlomo (d) SepConv (e) MDP-Flow2 (f) DeepFlow2 (g) Ours

Figure 9: Visual comparisons of our method and five competing methods on examples from the Middlebury benchmark.
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