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Abstract—Character speech animation is traditionally consid- a new performance is required each time when creating a
ered as important but tedious work, especially when taking lip new animation or speech sequence. Manual adjustmentlis stil
synchronization (lip-sync) into consideration. Although there are a popular approach besides the above two, that artists are

some methods proposed to ease the burden on artists to create ted to adiust the f del trols f by-f
facial and speech animation, almost none are fast and efficient. In €qUested 10 adjust the face model controis frame-by-iframe

this paper, we introduce a framework for synthesizing lip-sync @nd compare the results back-and-forth. o _
character speech animation in real time from a given speech ~ When creating facial and speech character animation, it

sequence and its corresponding texts. Starting from training is more challenging to have a character model’s lips syn-
dominated animeme models for each kind of phoneme by learning ~hronized. It is a labor-consuming process, and even regjuir

the character's animation control signal through an EM-style millisecond-precise key-framing. Given a spoken scripe t
optimization approach. The dominated animeme models are P y g P

further decomposed to polynomial-fitted animeme models and artist has to first match the lips’ shapes with their supposed
corresponding dominance functions while takingcoarticulation — positions. Theransitions from word-to-word or phoneme-to-

into account. Finally, given a novel speech sequence and itsphoneme, a.k.aoarticulation, play a major role in speech ani-
corresponding texts, the animation control signal of the charater  ation and need to be adjusted carefully y]Coarticulation

can be synthesized in real time with the trained dominated is the bhenomenon that honem n influence the mouth
animeme models. The synthesized lip-sync animation can even'S (€ pneENOMENo at a phonéme ca uence the mou

preserve exaggerated characteristics of the character's fa Shapes of the previous and next phonemes. In other words,
geometry. Moreover, since our method can perform in real time, the mouth shape depends on not only the current phoneme

it can be used for many applications, such as lip-sync animation put also its context, including at least the previous and nex
prototyping, multilingual animation reproduction, avatar speech, phonemes. As opposed to simple articulated animation which

mass animation production, etc. Furthermore, the synthesized can be kev-framed with linear techniguesarticulation is
animation control signal can still be imported into 3D packages y ques)

for further adjustment, so our method can be easily integrated non-lin_ear and difficult to model. o
into existing production pipeline. In this paper, we propose a framework to synthesize lip-sync

Index Terms—lip synchronization, speech animation, charac- character speech ar_1imation irj real time. For each phoneme,
ter animation, dominated animeme model, animeme modeling, ©N€ or multipledominated animeme models (DAMs)are
coarticulation. first learned via clustering from a training set of speech-to
animation control signal (e.g. the character controls used
Maya or cross-mapped mocap lip-motions).DRAM is the
product of a latent dominance function and an intrinsic anim

ITH the popularity of 3D animation and video gamesime function, where the former contratsarticulation and the
facial and speech character animation is becomingtter models the mouth shape in the sub-phoneme accuracy.
more important than ever. MPEG-4 even defined the facthe two entangled functions are learned and decomposed
animation as one of its key features [1]. There are mamyrough an EM-style solver.
technologies allowing artists to create high quality chea  |n the synthesis phase, given a novel speech sequence, the
animation, but facial and speech animation is still diffidol DAMs are used to synthesize the corresponding speech-to-
sculpt because the correlation and interaction of the reaschnimation control signal to generate the lip-sync characte
on the face are very complicated. Some physically-basggeech animation automatically, so it can be integratenl int
simulation methods are provided to approximate the musclegsting animation production pipeline easily. Moreownce
on the face, but the computational cost is very high. A leggir method can synthesize acceptable and robust lip-sync
flexible but affordable alternative is the performancereli animation in real time, it can be used in many applications
approach [2][3][4][5], in which the motions of an actor isfor which prior techniques are too slow, such as lip-sync
cross-mapped and transferred to a virtual character (See 4@imation prototyping, multilingual animation reprodoci,
for further discussion). This approach gains much succeggatar speech, mass animation production, etc.
but the captured performance is difficult to re-use such thatTo summarize the contributions of this paper:

1) A framework is proposed to synthesize lip-sync charac-
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animation production pipeline. new lip-sync motions. Unlike other previous methods which
3) We present the DAM, which fitsoarticulation better by directly use training data to synthesize results, our aggro
modeling the animation control signal in sub-phonemean synthesize natural lip shapes that did not appear in the
precision with the product of a latent dominance fundraining data set.
tion and an intrinsic animeme function.
4) Dglﬁilggl;s?AMs are used to handle large intra ammemg Lip-Sync Speech Animation
Many speech animation methods derive from the facial
Il. RELATED WORK animation and modeling techniques. The analysis of the

honemes under the context of speech-to-face correspon-

S . . .
[6][7][ ?] provided good surveys. In this section, we separa%ence’ a.k.gwseme s the subject of muc;h §uccessfu| WOI’k..
i e . N any previous methods addressed this issue with Spline
the face modeling and the specific modeling for lips in the

discussion generation, path-finding, or signal concatenation.
' Parameterized/blend-shape techniques [26][27][28] for
speech animation are the most popular methods because of
A. Facial Animation and Modeling their simplicity. Sifakiset al. [29] presented a physically-
Most facial animation and modeling methods cahased approach to simulate the speech controls based on
be categorized into parameterized/blend-shape, phisica[20] for muscle activation. This method can interact with
based, data-driven, and machine-learning approaches. ®bjects while simulating, but still, the problem is the sim-
parameterized/blend-shape modeling, faces are paramegterulation cost. Data-driven approaches [21][30] form a graph
into controls; the synthesis is done manually or automidgicafor searching the given sentences. Like similar approaches
via control adjustment. Previous work on linear blend-shaghey used various techniques, e.g. dynamic programming, to
[8][9][10], face capturing/manipulation (FacelK) [11],né optimize the searching process. Nevertheless, they sffitrs
face cloning/cross-mapping [12][13][14][15][16] proed a from missing data or duplicate occurrence. Machine-legyni
fundamental guideline for many extensions. However, theitethods [31][32][33][34][35] learn the statistics for ptene-
underlying mathematical frameworks indeed have somedimitto-animation correspondences, which is caldmemsg in
tions, e.g. the faces outside the span of examples or pagesnedrder to connect animation up to speech directly and reduce
cannot be realistically synthesized, and these technigaies these searching efforts.
quire an excessive number of examples. Other methods reduckofgvist [36] and Cohen and Massaro [37] provided a
the interference between the blend-shapes [17] or enhhracekey insight to decompose the speech animation signal into
capabilities of cross-mapping to animate the face modélp [1target values (mouth shapes) and latent dominance fuisction
Physically-based methods [19][20] simulate the musclés model the implicitcoarticulation. In subsequent work, the
on the face, and the underlying interaction forms the subti®minance functions are sometimes reduced to a diphone
motion on the skin. The advantage of the physically-based triphone model [33] for simplicity. However, the origina
methods over the parameterized/blend-shape ones is exfemmnework shows some examples (e.g. the time-locked or
sibility: the faces can be animated more realistically, arldok-ahead model) that are difficult to explain by the simple
the framework allows interaction with objects. However thdiphone or triphone model. Their methods are later extended
muscle-simulation is very expensive, and hence reduces theCosiet al. [38] with the resistance functions and shape
applicability to interactive controller. functions, which is the basic concept of tharimeme
Data-driven methods [21] construct a database from a verySome recent methods [29][34][35] used the concept of
large training dataset of faces. The synthesis of novebfacanimeme a shape function, to model the sub-viseme signal
animation is generated by searching the database and miaiincrease the accuracy of phoneme fitting. Kim and Ko [34]
mizing the discontinuity between successive frames. Gilsen extended [31] by modeling theisemewithin a smaller sub-
starting and ending example frames, the connecting patiein phoneme range with a data-driven approaCbarticulation
database forms newly synthesized facial animation. Howyeviss modeled via a smooth function in their regularization
they have to deal with missing training data or repetitiveith the parameters found empirically. However, it has to
occurrence of the same records. resolve conflicting and insufficient records in the trainsey.
Machine-learning technigues base their capabilities @n tBifakiset al. [29] modeled the muscle-control-signal animeme
learned statistical parameters from the training sampleszi- (they call it physemd for each phoneme, and concatenate
ous methods [22][23][24][25] employed various mathenaticthese animemes for words. They found that each phoneme has
models and can generate new faces from the learned sttistarious similar animemes with slight variations duectr-
while respecting the given sparse observations of the néav ddiculation, which is modeled with linear cross-fade weighting
In our system, we adopt the blend-shape facial basis baseda diphone or triphone fashion.
on “Facial Action Coding System (FACS) [8]" to form the Kshirsagaret al. [39] presented a different approach to
speech-to-animation controls to drive the 3D face modeds eanodel coarticulation by using thevisyllable. Each syllable
ily. By merging the advantages of the data-driven and maehircontains at least one vowel and one or more consonants. It
learning techniques, we construct a lip-shape motion obntrequires about 900 demi-visyllables for the system in thgir
database to drive speech activities and moreover genenageiments, and therefore the approach needs a huge database

Face modeling and facial/speech animation are broad topi



Wampleret al. [35] extended the multilinear face model [25]to Putting multiple phonemes together to get the full sequence
derive new lip-shapes for a single face modarticulationis of animation control signal, we simply concatenate these
modeled by minimizing the lips’ positions and forces exgrte DAMs with the summation of their normalized values:
However, it is usually unnecessary to sample the face tensor J

space to produce a single speech segment. Moreover, the face C*(t) = Z Cj(t;) = Z Dj(t;)A;(t), 2
tensor space also inherits the curse of dimensionalitychvhi i=1 J

is also a difficult topic for facial capturing. . wherej = 1,2, ..., J indicates thej-th phoneme in the given
We learned from many successful previous methods anH ; ’
phoneme sequence, amg = (¢ — s;)/d; is the normalized

improved the deficien_cies in them. The gnqusis ‘T‘ Soe- local time for each phoneme activation, whesg is the
viseme or so-calledanimeme space has significant Imlorove':starting time-stamp of thg-th phoneme and; is its duration.

ments over the viseme analysis. In addition, we also sol : . ; .
. . . . : enerally, in the dominance function of an animeme, the fall
for the hidden dominance functions, and extendrticulation L : N
: : ! off controls its influence beyond its phoneme activationigabr
beyond the simpler diphone or triphone model. Moreov : . .
rong coarticulation has slow fall-off and vice versa. Note

the synthesis process is much simpler and faster because ¢
models used for generating the results are trained in arrn@fflit arthe phpnemes f?‘rth.er away from the current phoneme may
ore-pass have very I_|ttIe cor_ltr|but|on to it, so the influence of the BA
' far from it is relatively small.
One major observation besides the above description is the
1. D OMINATED ANIMEME MODELS (DAMs) intra-animeme variations. In fact, some phonemes strongly

To animate a character (face) model from a given scrigkepend on lip-shapes than others. By performing the unsu-
(phonemes), it is necessary to form the relationship betwegervised clustering [40], we found some phonemes can have
the phonemes and animation control sigd&lt), which is multiple DAMs which we call themmodes, the choice of
called animeme that means the animation representation afhich mode to use depends on the speech context. This
the phoneme. However, due tmarticulation, it is hard to finding coincidentally agrees with many successful datzedr
model the animeme with a simple function, so we model thaethods.
animation control signal’(¢) with a product of two functions:  In the subsequent sections, we will use the DAMs and give
the animeme function and its dominance function. The ard- system that learns and synthesizes speech animation se-
meme function controls the intrinsic mouth shapes when usgdences. To learn the parameters for modeling animemes and
alone without other phonemes. When putting words togethéeir dominance functions, multipleodes of each phoneme
it is necessary to concatenate several phonemes togethes first found by affinity-propagation [40]. Then, an EMisty
and the dominance functions of the animemes control theislver is performed to learn the DAM parameters for each
individual influence and fall-off, and henceparticulation. mode, specifically the polynomial coefficients for animeme
Mathematically, onedominated animeme model (DAM)is functions and the fall-off controlss(in Eq. (1)) for dominance
modeled as: functions. Once the parameters are learned, we can syrghesi

the animation control signal given a novel speech sequeamte a
C(t) = DH)A(t), T € [-00,0q] its corresponding texts. The given texts provide the guade t
where the animeme functioa(t) is modeled with a high de- choose an individual DAM for each phoneme, and the chosen
gree polynomial function to simulate the relationship etw DAMs are then concatenated with Eq. (2).
phonemes and lip shapes, and the dominance fundiign
is modeled via a modified exponential function, which is used IV. OVERVIEW
to simulatecoarticulation.

Some previous literatures [33][36] described the domiean
function as a bell-shape function. That means, although
lip-shape is mainly affected by the current phoneme, the li
shape is also affected by the neighboring phonemes. Irmlspi{ﬁ
by [37], if the time is within the activation of the phonemes(j t
t € [0,1]), then the animeme has full influence. Exponentiq\ﬂ
fall-off is applied when time is outside the activation oefi
of the phoneme:

Fig. 1 shows our system flowchart. The system has two
hases: training (left) and synthesis (right). In the fran
ase, the system takes as input the captured lip-motions or
e animation control signal of the character (face) model
rectly. The animation control signal is usually used tivelr

e motions of a character model in the modeling tools, like
aya. If we choose the lip-tracking result from a speech
video or 3D lip-motions captured by a mocap facility, the
data in the vertex domain will be first cross-mapped to the

1, te[0,1] control signal domain (discussed in Appendix A). If there
—t? exists acceptable lip-sync character animation, the caygtu
D(t) = P 2 +5) ’ t<0 1) anq crpss—mapping processes can be_; omitted_; the speech-to-
—(t— 1)2 animation control signal from the existed artist-sculpted
€xp 21 | t>1 captured speech animation can be used directly.

Then, the speech and its corresponding texts are aligned
whereo is the phoneme specific parameter affecting the rangéth SPHINX-II [41] to obtain the aligned scripts (phoneme
of influence, and: is a small constant to prevent dividing bysequence), which contain phonemes with their starting-time
zero. stamps and durations in the speech. The aligned scripts and



text speech

transitions and user-specified constraints, which arelairto
our choices ofnodes. In the synthesis phase (Section VI), we
will discuss themode-selection in more details.

- .,
“,

with Controls

B. Estimating Animeme Function

Assuming eachmode of each phoneme appears in the
sequence exactly only once and denoting tfth dominance

aligned scripts

. optional 4

lip motion

€
= = M = = -

Mapping Function function D; (i) at time+ as a fixed valueD?, the estimation
i ! of the polynomial function4;(t) can be reduced to find the
wxt speech animation animation polynomial coef“fi(:ientSULE?,a},...,0L§w . Then, Eq. (2) can be
control signal control signal rewritten as:

aligned
scripts

C(i)=)_ D; [Z a?“(té)’”] ; @)

and Modeling j=1 m=0

lip-syncspeech animation ~ Wherets = (i — s;)/d; is the normalized local time-stamp
from the activation of the-th phoneme.

Fig. 1. System flowchart. Since we want to find the coefficieni$, a}, ..., a}’ for each

phonemej (M = 4 in our implementation), in a regression

manner, we can set the partial derivative of regressiorr &ro

animation control signa’(¢) are used as training examplesyith respect to then-th coefficienta”” for the j-th phoneme
to construct the DAMs (Section V) for future novel speec, ;or0. The least square fitting forj regression is:

animation synthesis.

In the synthesis phase, we take as input a novel speech and , J ; M i
its corresponding texts, and use SPHINX-II again to obtaén t fi =€)~ ZDj Z ai* (t5)™ |
aligned scripts. From the scripts, the DAMs are concatehate 7=1 m=0 )
to generate the animation control sign@l (Section VI). n S [M .
Finally, the animation control signal’* is used to animate R=F'F = Y |C(i)-> D! [Z a}"(t;)m] )]
the character (face) model in Maya or similar modeling tools i=0 j=1 m=0
to generate the lip-sync character speech animation. whereF is the column-concatenated vector formed for each

The core cpmponents in the system are the learning mOdB|€ment fi. Since the unknowns™ are linear inF, the
for constructing and modeling the DAMs and the synthesigspiem is essentially a linear least-square fitting. Byirsgt

module for generating the animation control sigadl, which 5| partial derivatives to zero and arranging Eg. (4), we can
will be explained in the next two sections, respectively. obtain the following matrix representation:

Dl(tl)o Dl(tl)M Dl Dl (tl )M
V. LEARNING DAM S s 3 J 54
_ D¥(t)° .- DieH)M .- DI - DI(EHM
A. Learning Modes for Phonemes D= : . )
According to the aligned scripts (phon_eme se_:que_nce), every Dr(¢m)° ... DR(g)M ... Dn o D?(tg)M
phoneme can have many corresponding animation control
signals. Based on these training examples, we can construct 0 " o T
the phoneme’s DAM(s). However, we found it is difficult to A= [ ar - ap 0o Gy s Gy ] )
decouple the animeme function and its dominance function
gracefully if we construct a single DAM for each phoneme due C— [ co o o2 ... Con }T

to large intra-animeme variations. Instead, multiple DAMIs

modes, for each phoneme are used. The choicenofles in a whereD is the dominance matrixA is the coefficient vector

speech sequence depends on the speech context. we want to solve, an@ is the observed values at each time
The training animation control signal for each phoneme &9 the minimum error to the regression fitting can be written i

first fitted and reconstructed with a cubic Spline interpoldhe standard normal equation with the following matrix form

tion, while the duration of the phonemg is para.meterize'zd' to (D'D)A = D’C, )

t € [0,1]. Then, an unsupervised clustering algorithm, affinity

propagation [40], is used to cluster the training contrghal whereD is ann x ((M + 1) x J) matrix, C is ann vector,

into somemodes; the quantity of the clustering is determinedand A is an (M + 1) x J vector to be solved.

automatically. If we remove the assumption that eachbde of each
Note that the idea ofnodes is not new; data-driven ap- phoneme appears exactly once, multiple occurrences of each

proaches synthesize animation by searching animatiors clipode of a phoneme have to be fitted to the same value. Hence,

within the database. This kind of methods has to deal withe can rearrange the multiple occurring terms and make it

repetitive clips. The use of which clips depends on smoo#asier to solve. For example, if phonermgwith only one



mode) appears twice as the first and third phonemes in tr(ls ;kt) G R AE F (esr:;)

phoneme sequence, then Eq. (3) becomes: DAML DAM]
C(i) = Di Ay, (t1,)+ D5As(th) + Dy, Ar, (t5,) + ...
= [Di, +Di,]a} + [Di, (t1,) + D, (t1,)] a1 + ..
+  Diad + Diad(th) + Dya3(th)? + ..., (6)

DAM2

where 1; and 1, indicate the first and second times the

phonemel appeared. Note that the polynomial coeffici i ) o i

of the animeme function (1) are the same and ndependerfi, . o iy hobm i o Syibesizng Srapn Erae

to the occurrences. sequence (denoted by solid circles and lines) is selectedi*taigorithm.
By the above re-arrangement, we can remove the original

assumption that eaclnode of each phoneme can appear

exactly only once, and rewrite the original term in Eq. (3P. Learning with Iterative Optimization

with the summation of each occurrengg of the samemode I the previous two sections, we showed how to minimize
of phoneme; as: the regression error by estimating the animeme functigft)
i im i i m and its hidden dominance functioP;(t). Since the entire
D;(t5)"™ = ZDjh(tjh) ’ @) formulation is not linear and cannot be solved intuitively,
H;

we employed an EM-style strategy that iterates between the

where j, denotes theh-th time occurrence of thenode of estimation of the animeme functioh; (¢) and the optimization
phoneme;. for the dominance functiod; (¢).

o The E-step involves estimating the polynomial coeffi-
cientsa’" for each animeme functiod;(¢) by solving a
linear regression using the standard normal equation.
In the previous section to estimate the animeme function, The M-step tries minimizing the regression error to

A;(t) of the j-th phoneme, we assumed that its dominance estimate the influence contralg by improving the non-

function D;(t) is known and fixed. In this section, we will linear dominance functiom; (t).

describe how to estimate the dominance functioy(t) over

the regression, given that the animeme vallg:) at time+

is known and fixed, denoted a¥’. Back to the definition of
the dominance function formulated in Eq. (1), for phoneme yhe fynction by iteratively updating the influence controls

its influence control is affected by;, which is unknown Now. 4 harameters of the polynomial coefficients' are carried
Here, we want to minimize the regression Eq. (4) again §$m the first half of the iteration. The EM-style strategy

we did in the previous section. However, since the parame;g_;reps iterating between thestep and M-step until no more

o; for regression is non-linear, we need a more sophisticatgthrovement on regression error can be done. Convergence

solver. Standard_ _Gauss-Nevvton |terat|\_/e solver is used 6Poptimizing D;(t) is fast, but the effect of estimating; (t)

approach the minimum of the regression erler AS We has more perturbation om;. The number of iterations for

defined the residual error in the previous section, the Ga“%%nvergence is varying for different DAMs, which is dirsctl

C. Estimating Dominance Function

First, when solving for theE-step the initial influence
control parametersr; involved in D;(t) are set tol. At
the M-step, where the Gauss-Newton algorithm linearizes

Newton algorithm linearizes the residual error as: proportional to the quantity of the clustered control sigrfar
J each DAM, but the process is an off-line computation in the
fi = C@)— ij(té)A;ﬁ’ training phase separate from synthesis.
j=1
F(o;+0) ~ F(o;)+Jd, (8) VI. SYNTHESIZING WITH DAM S

In the synthesis phase, we want to generate the output

formed by f; but takes as input the influence contaglfor the control signal according to the input phoneme sequence_eSin
j-th phonemes is the updating step for gradient direction of°Me Phonemes may have multiphedes, we have to decide

the Gauss-Newton solver, addis the Jacobian matrix. EachWhich mode should be used for each phoneme. The goal to
iteration of the Gauss-Newton algorithm solves a lineatiz&°NStruct the output animation control signal requiresciefg

problem to Eq. (4), and after removing the terms that do ng}e most suitablenode for each phoneme, and then directly
dependent om, we get the follows: use Eqg. (2) to concatenate the DAMs in the sequence.

Giving a phoneme sequenge= 1,2,...,J and possible
J'3s = -J'F, modes DAM! (g = 1,..,G;, where G; is the number
J;§+1 _ J;_c s 9) of .mod&c) for each phonemg, Fhe animemes can form an
animeme-graph as shown in Fig. 2. The selection of suitable
The Gauss-Newton algorithm repeatedly optimizes the segrenodes for the phoneme sequence can be treated as a graph
sion error by updating’ to a;-“ at the k-th iteration, and search problem, and A* algorithm is used in our implemen-
achieves linear convergence. tation. Since we want to find a compromise between the

wheret; = (i —s;) /d; is the normalized local timeF is



TABLE | 0ss
THE MODELS USED IN THIS PAPER e
‘N‘ t ==DAM
model \ vertex# face#  control# o A 1\ Cohen_Massaro
Afro-woman | 5,234 5,075 7 058 1— = MMM
Boy 6,775 6,736 7 s\ e Lt =/ T‘_ —training data
Child 6,991 6,954 16
Old-hero 8,883 8,738 8
Court-lady 1,306 1,307 7

Fig. 4. The comparison of the signal fitted in Fig. 3 by DAM, Cohe
Massaro Model, and MMM with the captured one. The y-axis showe of
the coordinates of a control.

Fig. 3 shows a comparison of the training data and the syn-
thesized results of ouominated animeme model (DAM)
Cohen-Massaro model [37], and multi-dimensional morphabl
model (MMM) [31], while speaking “popular” by using the
Afro woman model. Fig. 4 shows a part of signal fitting
for these results. The averade?-norms for DAM, Cohen-
Massaro model, and MMM are 0.4724, 0.6297, and 0.5023,
respectively. This sequence represents continuous lijomot
and the flow is from left to right. According to the training
data, the lips should be closed during the phoneme “P” and
opened for other phonemes appropriately. At the last fraine o
the sequence, the mouth closes to prepare for the next word.
Note that the Cohen-Massaro model is implemented using
our DAM by settingM = 0 in Eq. (4), i.e., the polynomial
form is reduced to only the constant term. The formulation
of our dominance function (Eq. (1)) is very similar to their
original form but with the flexible extension that the shapes

P AATEPT O TYT AR L PER” of the phonemes can be varied. The reconstruction result of
Fig. 3. The comparison of training data (the 1st raw) and thehgsized the Cohen-Massaro model is too SmOOth at some parts In
results of DAM (the 2nd raw), Cohen-Massaro model (the 3rd)ramd the sequence, such that consecutive phonemes are greatly
MMM (the 4th raw), while speaking “popular” by Afro-woman. influenced, i.e., they span too much. Hence, the features
of a few phonemes can be shown, but others are not as
prominent as they should be. In contrast, our DAM spans more

likelihood of themodes and the smoothness in the animatiorProperly in range with respect to the training data. The MMM
the cost of each node in the animeme-graph is set as: ~ formulates the fitting and synthesis as a regulation problem
fits each phoneme as a multidimensional Gaussian diswibuti

E=wE.+ wsE;, (10) and forms the words or sentences as a path going through these
honeme regions by minimizing an energy function contgnin

\t/r\:here (;EC IDSAa}\/[dga?? :ﬁm][r \?;:rlfh retp{i?\iegt?,\,it&eit“kelrlh\?iOd cgtarget term and a smoothness term. The speech poses using
€ moade j € traning set finke S PrEVIOUS \i\iv have good timing but lack prominent features.

and next phonemesf, is the smoothness term computing Fig. 5 sh its of K ds - “apple”
the C2 smoothness on the joint frame of eveByAM? (g = g. 5 shows two results of speaking two words - “apple
J and “girl” by using the Afro woman model. As shown in the

5 g —
t : gjii))f gﬁé%ﬁﬁ&?gﬁ?&ﬁg Evf,réaﬁi?;néng E,I\?S&up view of the moutt\,”although the last phonemes of the
are the weights of the error terms. We used= 1000 and 0 wor_ds are the same (L"), the lip shapes are d'ﬁefe”t due
_ ; : to coarticulation. Note that the lip shape for pronouncing the
ws = 1 for all results in this paper.
phoneme “P” shows the mouth closes well, although some
other similar methods cannot due to the smoothness effect.
VII. REsuLT One can also notice that while pronouncing the phoneme
The training set involves 80 sentences and about 10 minutER”, the tongue is rolled. In general, the shape change of
of speech context with unbiased content. In the trainingsghathe tongue is very hard to capture. However, since our method
constructing the DAMs costs about560 minutes per control Uses animation control signal as the training data, once the
on a desktop PC with an Intel Core2 Quad Q9400 2.66GHgrget model is designed well for performing such features,
CPU and 4GB memory. For synthesizing a lip-sync spee6hr synthesis results can also keep these characteristics.
animation, the animation control signal formed by our DAMs Fig. 6 and 7 show two other results with different models:
are generated in real time (i.e., 0.8 ms. per phoneme the old hero speaks “old man” and the boy speaks “top of
average). Table | shows the number of vertices, faces, aheé world”. All of them have their typical styles. Comparing
controls of each model, respectively, used in this paper. the lip shapes of the two models while pronouncing the




“SIL” uERu

Fig. 5. Result of speaking “Apple” (upper) and “Girl” (loweby Afro-woman.

“M” uAEn uNu uSILn

Fig. 6. Result of speaking “Old Man” by Old-hero.

phoneme “L", their lip shapes performed in two differeninated animeme modelgDAMs), which are constructed and
ways because ofoarticulation and their characteristics. Tomodeled from the training data in sub-phoneme accuracy for
keep the models’ characteristics while synthesis, our atethcapturingcoarticulation well. Through an EM-style optimiza-

is character (model) dependent. Each character's DAMsl@hotion approach, the DAMs are decomposed to the polynomial-
be trained by its own animation control signal. Models witfitted animeme functions and their corresponding dominance
similar controls can use the same DAMs. Of course, artigis ctunctions according to the phonemes. Given a phoneme se-
also use another model’s trained DAMs to make a prototypeience, the DAMs are used to generate the animation control
of a novel model, and then refine the model for training itsignal to animate the character (face) model in Maya or
own DAMs. This can speed up the training preparation timgmilar modeling tools in real time while still keeping the

while keeping the quality of the training data. character’s exaggerated characteristics. Moreover, thlD
are constructed by the character controls instead of atesigiu
VIIl. CONCLUSION AND FUTURE WORK shapes, so it can perform better training/synthesizingltes

, .and is suitable to be integrated into existing animatior|iie.
In this paper, we propose a new framework for synthesigy sing the Facial Animation Parameters (FAPs) defined in

ing lip-sync character speech animation in real time with @peG.4 for training and synthesis, our approach can beyeasil
given novel speech sequence and its corresponding texts. Quanded to support MPEG-4 facial animation [42].
method produces fairly nice transitions in time and gemsrat

the animation control parameters that are formed bydmum- Even though the quality of the synthesized lip-sync char-



“SI Ln

“lA\H“

“v7 “OH” “W” “‘ER” “rr ‘D"

Fig. 7. Result of speaking “Top of The World” by Boy.

acter speech animation may not be perfect as compared wdthstering algorithm, e.g. [40]. The captured key-lip{sbsl
that of animation created manually by an artist, the syritleds are then used to fit the captured lip moti6h for each frame
animation can still easily be fine-tuned, since the autazallyi 7 by using the Non-Negative Least Square (NNLS) algorithm
generated animation control signal is lip-synchronized ario obtain the blending coefficients:. This process can be
can be used directly in Maya or similar animation tools. Bgxpressed as the following constrained minimization:
extending the phoneme dictionary, our method can also be

used to produce multilingual lip-sync speech animatiorilyeas ) ; K ; ) ;
Furthermore, since our method can synthesize acceptatlle an min || L — Zo‘kLkH , Vag >0,
robust lip-sync character animation in real time, it can bedu k=1

for many applications for which prior methods are inadequalypere f¢ is the number of identified key-lip-shapes. The above
such as lip-sync animation prototyping, multilingual aatfon  ,,qtering and fitting process for the captured lip motioade
reproduction, avatar speech, mass animation producton, €, pe performed only once. If the target character model has
Our model still has some weaknesses, such as that it e \ell-defined bases, it is better to assign the key-lip-
rently infers the dynamics of motion solely from the trag"nshapes to the bases manually, since the blending coeficient

data set. If the t_raining data set does not contair_l speedlaBim i -an be used as the control siga#l directly without further
to the synthesis target, the results may be inaccurate. Ftﬁ

o if the training d _ v ord prbcessing.
exampie, 1 t et_ramlng ata set co.n'Falns only or inanespe To cross-map the input captured lip motion to the target
it will be unsuitable for synthesizing a singing characte

r . . R i
because the typical phoneme behavior for singing a Songs/ar;l:haracter model, the identified key-lip-shaggsare first used

! . 0 guide the artist to adjust the verticd8 on the lips of
greatly from the ordinary speech and imposes more chaltengﬁe target character model to imitate the key-lip-shapes

for dynamics modeling. A second weakness is that in lhile keeping the character’s characteristics. The nunaer

DAMSs, we used a function of Gaussian-based form to modg justed vertices should be equal to or more than that of

the dominance functions. A potential problem is that whilﬁ1e character control§! (ie., [V] > | C[) for solving the

sining'asong, certajn phoneme.s.may extend indefinitely Wi&nstrained minimization in the next paragraph. Then, the
dragging sounds. It is not only difficult for a speech recagni blending coefficientsa. are used to blend the adjusted lip

to identify the ending time, but also the Gaus_smn-basguj\ f%erticest for key-lip-shapesL;, to obtain the lip vertices
cannot accommodate such effects. One possible solutian is; for each frame via:

model the dominance functions with greater variability an
non-symmetric models. K
V=Y "0} Vi
APPENDIXA k=1

CROSSMAPPING Instead of using the lip vertice¥* for training directly,

Although the input of our system is animation controfor better training/synthesis results and animation [gel
signal, to ease the efforts for adjusting the character) (li;mtegration, the training and synthesizing are performamy
model, we also provide a method to cross-map the captumdthracter controls. Assuming there aeanimation controls
lip motion to the animation control signal. After the lip mamt  C, € C, which can be used to drive the lip motions of the
is captured, the key-lip-shapds, are identified first, which target character model, the animation control sigfalfor
can be pointed out by the artist or by using an unsupervisedch frame and controlt can be obtained by fitting the lip



verticesV' as the following constrained minimization:

whereV (-) denotes the transfer function from control signal tgso]

R

min [V =Y V(CHIP,

=1

lip vertices, and each animation cont(@ € C" is constrained
to [0,1]. Again, it is solved by the NNLS algorithm.
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