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Animating Lip-Sync Characters with Dominated
Animeme Models

Yu-Mei Chen, Fu-Chun Huang, Shuen-Huei Guan, and Bing-Yu Chen, Member, IEEE

Abstract—Character speech animation is traditionally consid-
ered as important but tedious work, especially when taking lip
synchronization (lip-sync) into consideration. Although there are
some methods proposed to ease the burden on artists to create
facial and speech animation, almost none are fast and efficient. In
this paper, we introduce a framework for synthesizing lip-sync
character speech animation in real time from a given speech
sequence and its corresponding texts. Starting from training
dominated animeme models for each kind of phoneme by learning
the character’s animation control signal through an EM-style
optimization approach. The dominated animeme models are
further decomposed to polynomial-fitted animeme models and
corresponding dominance functions while takingcoarticulation
into account. Finally, given a novel speech sequence and its
corresponding texts, the animation control signal of the character
can be synthesized in real time with the trained dominated
animeme models. The synthesized lip-sync animation can even
preserve exaggerated characteristics of the character’s facial
geometry. Moreover, since our method can perform in real time,
it can be used for many applications, such as lip-sync animation
prototyping, multilingual animation reproduction, avatar speech,
mass animation production, etc. Furthermore, the synthesized
animation control signal can still be imported into 3D packages
for further adjustment, so our method can be easily integrated
into existing production pipeline.

Index Terms—lip synchronization, speech animation, charac-
ter animation, dominated animeme model, animeme modeling,
coarticulation.

I. I NTRODUCTION

W ITH the popularity of 3D animation and video games,
facial and speech character animation is becoming

more important than ever. MPEG-4 even defined the facial
animation as one of its key features [1]. There are many
technologies allowing artists to create high quality character
animation, but facial and speech animation is still difficult to
sculpt because the correlation and interaction of the muscles
on the face are very complicated. Some physically-based
simulation methods are provided to approximate the muscles
on the face, but the computational cost is very high. A less
flexible but affordable alternative is the performance-driven
approach [2][3][4][5], in which the motions of an actor is
cross-mapped and transferred to a virtual character (see [6]
for further discussion). This approach gains much success,
but the captured performance is difficult to re-use such that
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a new performance is required each time when creating a
new animation or speech sequence. Manual adjustment is still
a popular approach besides the above two, that artists are
requested to adjust the face model controls frame-by-frame
and compare the results back-and-forth.

When creating facial and speech character animation, it
is more challenging to have a character model’s lips syn-
chronized. It is a labor-consuming process, and even requires
millisecond-precise key-framing. Given a spoken script, the
artist has to first match the lips’ shapes with their supposed
positions. Thetransitions from word-to-word or phoneme-to-
phoneme, a.k.a.coarticulation, play a major role in speech ani-
mation and need to be adjusted carefully [7][?]. Coarticulation
is the phenomenon that a phoneme can influence the mouth
shapes of the previous and next phonemes. In other words,
the mouth shape depends on not only the current phoneme
but also its context, including at least the previous and next
phonemes. As opposed to simple articulated animation which
can be key-framed with linear techniques,coarticulation is
non-linear and difficult to model.

In this paper, we propose a framework to synthesize lip-sync
character speech animation in real time. For each phoneme,
one or multipledominated animeme models (DAMs)are
first learned via clustering from a training set of speech-to-
animation control signal (e.g. the character controls usedin
Maya or cross-mapped mocap lip-motions). ADAM is the
product of a latent dominance function and an intrinsic anim-
ime function, where the former controlscoarticulation and the
latter models the mouth shape in the sub-phoneme accuracy.
The two entangled functions are learned and decomposed
through an EM-style solver.

In the synthesis phase, given a novel speech sequence, the
DAMs are used to synthesize the corresponding speech-to-
animation control signal to generate the lip-sync character
speech animation automatically, so it can be integrated into
existing animation production pipeline easily. Moreover,since
our method can synthesize acceptable and robust lip-sync
animation in real time, it can be used in many applications
for which prior techniques are too slow, such as lip-sync
animation prototyping, multilingual animation reproduction,
avatar speech, mass animation production, etc.

To summarize the contributions of this paper:
1) A framework is proposed to synthesize lip-sync charac-

ter speech animation in real time.
2) Instead of generating hard-to-adjust vertex deformations

like other approaches, high-level control signal of 3D
character models is synthesized. Hence, our synthesis
process can be more easily integrated into existing
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animation production pipeline.
3) We present the DAM, which fitscoarticulation better by

modeling the animation control signal in sub-phoneme
precision with the product of a latent dominance func-
tion and an intrinsic animeme function.

4) Multiple DAMs are used to handle large intra-animeme
variations.

II. RELATED WORK

Face modeling and facial/speech animation are broad topics;
[6][7][ ?] provided good surveys. In this section, we separate
the face modeling and the specific modeling for lips in the
discussion.

A. Facial Animation and Modeling

Most facial animation and modeling methods can
be categorized into parameterized/blend-shape, physically-
based, data-driven, and machine-learning approaches. For
parameterized/blend-shape modeling, faces are parameterized
into controls; the synthesis is done manually or automatically
via control adjustment. Previous work on linear blend-shape
[8][9][10], face capturing/manipulation (FaceIK) [11], and
face cloning/cross-mapping [12][13][14][15][16] provided a
fundamental guideline for many extensions. However, their
underlying mathematical frameworks indeed have some limita-
tions, e.g. the faces outside the span of examples or parameters
cannot be realistically synthesized, and these techniquesre-
quire an excessive number of examples. Other methods reduce
the interference between the blend-shapes [17] or enhance the
capabilities of cross-mapping to animate the face models [18].

Physically-based methods [19][20] simulate the muscles
on the face, and the underlying interaction forms the subtle
motion on the skin. The advantage of the physically-based
methods over the parameterized/blend-shape ones is exten-
sibility: the faces can be animated more realistically, and
the framework allows interaction with objects. However, the
muscle-simulation is very expensive, and hence reduces the
applicability to interactive controller.

Data-driven methods [21] construct a database from a very
large training dataset of faces. The synthesis of novel facial
animation is generated by searching the database and mini-
mizing the discontinuity between successive frames. Giventhe
starting and ending example frames, the connecting path in the
database forms newly synthesized facial animation. However,
they have to deal with missing training data or repetitive
occurrence of the same records.

Machine-learning techniques base their capabilities on the
learned statistical parameters from the training samples.Previ-
ous methods [22][23][24][25] employed various mathematical
models and can generate new faces from the learned statistics
while respecting the given sparse observations of the new data.

In our system, we adopt the blend-shape facial basis based
on “Facial Action Coding System (FACS) [8]” to form the
speech-to-animation controls to drive the 3D face models eas-
ily. By merging the advantages of the data-driven and machine-
learning techniques, we construct a lip-shape motion control
database to drive speech activities and moreover generate

new lip-sync motions. Unlike other previous methods which
directly use training data to synthesize results, our approach
can synthesize natural lip shapes that did not appear in the
training data set.

B. Lip-Sync Speech Animation

Many speech animation methods derive from the facial
animation and modeling techniques. The analysis of the
phonemes under the context of speech-to-face correspon-
dence, a.k.a.viseme, is the subject of much successful work.
Many previous methods addressed this issue with Spline
generation, path-finding, or signal concatenation.

Parameterized/blend-shape techniques [26][27][28] for
speech animation are the most popular methods because of
their simplicity. Sifakis et al. [29] presented a physically-
based approach to simulate the speech controls based on
[20] for muscle activation. This method can interact with
objects while simulating, but still, the problem is the sim-
ulation cost. Data-driven approaches [21][30] form a graph
for searching the given sentences. Like similar approaches,
they used various techniques, e.g. dynamic programming, to
optimize the searching process. Nevertheless, they still suffer
from missing data or duplicate occurrence. Machine-learning
methods [31][32][33][34][35] learn the statistics for phoneme-
to-animation correspondences, which is calledanimeme, in
order to connect animation up to speech directly and reduce
these searching efforts.

Löfqvist [36] and Cohen and Massaro [37] provided a
key insight to decompose the speech animation signal into
target values (mouth shapes) and latent dominance functions
to model the implicitcoarticulation. In subsequent work, the
dominance functions are sometimes reduced to a diphone
or triphone model [33] for simplicity. However, the original
framework shows some examples (e.g. the time-locked or
look-ahead model) that are difficult to explain by the simpler
diphone or triphone model. Their methods are later extended
by Cosi et al. [38] with the resistance functions and shape
functions, which is the basic concept of theanimeme.

Some recent methods [29][34][35] used the concept of
animeme, a shape function, to model the sub-viseme signal
to increase the accuracy of phoneme fitting. Kim and Ko [34]
extended [31] by modeling thevisemewithin a smaller sub-
phoneme range with a data-driven approach.Coarticulation
is modeled via a smooth function in their regularization
with the parameters found empirically. However, it has to
resolve conflicting and insufficient records in the trainingset.
Sifakiset al. [29] modeled the muscle-control-signal animeme
(they call it physeme) for each phoneme, and concatenate
these animemes for words. They found that each phoneme has
various similar animemes with slight variations due tocoar-
ticulation, which is modeled with linear cross-fade weighting
in a diphone or triphone fashion.

Kshirsagaret al. [39] presented a different approach to
model coarticulation by using thevisyllable. Each syllable
contains at least one vowel and one or more consonants. It
requires about 900 demi-visyllables for the system in theirex-
periments, and therefore the approach needs a huge database.
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Wampleret al. [35] extended the multilinear face model [25] to
derive new lip-shapes for a single face model.Coarticulation is
modeled by minimizing the lips’ positions and forces exerted.
However, it is usually unnecessary to sample the face tensor
space to produce a single speech segment. Moreover, the face
tensor space also inherits the curse of dimensionality, which
is also a difficult topic for facial capturing.

We learned from many successful previous methods and
improved the deficiencies in them. The analysis in thesub-
viseme, or so-calledanimeme, space has significant improve-
ments over the viseme analysis. In addition, we also solve
for the hidden dominance functions, and extendcoarticulation
beyond the simpler diphone or triphone model. Moreover,
the synthesis process is much simpler and faster because the
models used for generating the results are trained in an offline
pre-pass.

III. D OMINATED ANIMEME MODELS (DAM S)

To animate a character (face) model from a given script
(phonemes), it is necessary to form the relationship between
the phonemes and animation control signalC(t), which is
called animeme that means the animation representation of
the phoneme. However, due tocoarticulation, it is hard to
model the animeme with a simple function, so we model the
animation control signalC(t) with a product of two functions:
the animeme function and its dominance function. The ani-
meme function controls the intrinsic mouth shapes when used
alone without other phonemes. When putting words together,
it is necessary to concatenate several phonemes together,
and the dominance functions of the animemes control their
individual influence and fall-off, and hencecoarticulation.
Mathematically, onedominated animeme model (DAM) is
modeled as:

C(t) = D(t)A(t), t ∈ [−∞,∞]

where the animeme functionA(t) is modeled with a high de-
gree polynomial function to simulate the relationship between
phonemes and lip shapes, and the dominance functionD(t)
is modeled via a modified exponential function, which is used
to simulatecoarticulation.

Some previous literatures [33][36] described the dominance
function as a bell-shape function. That means, although our
lip-shape is mainly affected by the current phoneme, the lip-
shape is also affected by the neighboring phonemes. Inspired
by [37], if the time is within the activation of the phoneme (i.e.,
t ∈ [0, 1]), then the animeme has full influence. Exponential
fall-off is applied when time is outside the activation period
of the phoneme:

D(t) =
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(1)

whereσ is the phoneme specific parameter affecting the range
of influence, andε is a small constant to prevent dividing by
zero.

Putting multiple phonemes together to get the full sequence
of animation control signal, we simply concatenate these
DAMs with the summation of their normalized values:

C∗(t) =
J
∑

j=1

Cj(tj) =
∑

j

Dj(tj)Aj(tj), (2)

wherej = 1, 2, ..., J indicates thej-th phoneme in the given
phoneme sequence, andtj = (t − sj)/dj is the normalized
local time for each phoneme activation, wheresj is the
starting time-stamp of thej-th phoneme anddj is its duration.
Generally, in the dominance function of an animeme, the fall-
off controls its influence beyond its phoneme activation period.
Strong coarticulation has slow fall-off and vice versa. Note
that the phonemes farther away from the current phoneme may
have very little contribution to it, so the influence of the DAMs
far from it is relatively small.

One major observation besides the above description is the
intra-animeme variations. In fact, some phonemes strongly
depend on lip-shapes than others. By performing the unsu-
pervised clustering [40], we found some phonemes can have
multiple DAMs which we call themmodes; the choice of
which mode to use depends on the speech context. This
finding coincidentally agrees with many successful data-driven
methods.

In the subsequent sections, we will use the DAMs and give
a system that learns and synthesizes speech animation se-
quences. To learn the parameters for modeling animemes and
their dominance functions, multiplemodes of each phoneme
are first found by affinity-propagation [40]. Then, an EM-style
solver is performed to learn the DAM parameters for each
mode, specifically the polynomial coefficients for animeme
functions and the fall-off controls (σ in Eq. (1)) for dominance
functions. Once the parameters are learned, we can synthesize
the animation control signal given a novel speech sequence and
its corresponding texts. The given texts provide the guide to
choose an individual DAM for each phoneme, and the chosen
DAMs are then concatenated with Eq. (2).

IV. OVERVIEW

Fig. 1 shows our system flowchart. The system has two
phases: training (left) and synthesis (right). In the training
phase, the system takes as input the captured lip-motions or
the animation control signal of the character (face) model
directly. The animation control signal is usually used to drive
the motions of a character model in the modeling tools, like
Maya. If we choose the lip-tracking result from a speech
video or 3D lip-motions captured by a mocap facility, the
data in the vertex domain will be first cross-mapped to the
control signal domain (discussed in Appendix A). If there
exists acceptable lip-sync character animation, the capturing
and cross-mapping processes can be omitted; the speech-to-
animation control signal from the existed artist-sculptedor
captured speech animation can be used directly.

Then, the speech and its corresponding texts are aligned
with SPHINX-II [41] to obtain the aligned scripts (phoneme
sequence), which contain phonemes with their starting time-
stamps and durations in the speech. The aligned scripts and
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Fig. 1. System flowchart.

animation control signalC(t) are used as training examples
to construct the DAMs (Section V) for future novel speech
animation synthesis.

In the synthesis phase, we take as input a novel speech and
its corresponding texts, and use SPHINX-II again to obtain the
aligned scripts. From the scripts, the DAMs are concatenated
to generate the animation control signalC∗ (Section VI).
Finally, the animation control signalC∗ is used to animate
the character (face) model in Maya or similar modeling tools
to generate the lip-sync character speech animation.

The core components in the system are the learning module
for constructing and modeling the DAMs and the synthesis
module for generating the animation control signalC∗, which
will be explained in the next two sections, respectively.

V. L EARNING DAM S

A. Learning Modes for Phonemes

According to the aligned scripts (phoneme sequence), every
phoneme can have many corresponding animation control
signals. Based on these training examples, we can construct
the phoneme’s DAM(s). However, we found it is difficult to
decouple the animeme function and its dominance function
gracefully if we construct a single DAM for each phoneme due
to large intra-animeme variations. Instead, multiple DAMs, or
modes, for each phoneme are used. The choice ofmodes in a
speech sequence depends on the speech context.

The training animation control signal for each phoneme is
first fitted and reconstructed with a cubic Spline interpola-
tion, while the duration of the phoneme is parameterized to
t ∈ [0, 1]. Then, an unsupervised clustering algorithm, affinity
propagation [40], is used to cluster the training control signal
into somemodes; the quantity of the clustering is determined
automatically.

Note that the idea ofmodes is not new; data-driven ap-
proaches synthesize animation by searching animation clips
within the database. This kind of methods has to deal with
repetitive clips. The use of which clips depends on smooth

transitions and user-specified constraints, which are similar to
our choices ofmodes. In the synthesis phase (Section VI), we
will discuss themode-selection in more details.

B. Estimating Animeme Function

Assuming eachmode of each phoneme appears in the
sequence exactly only once and denoting thej-th dominance
function Dj(i) at time i as a fixed valueDi

j , the estimation
of the polynomial functionAj(t) can be reduced to find the
polynomial coefficientsa0j , a

1
j , ..., a

M
j . Then, Eq. (2) can be

rewritten as:

C(i) =

J
∑

j=1

Di
j

[

M
∑

m=0

amj (tij)
m

]

, (3)

where tij = (i − sj)/dj is the normalized local time-stamp
from the activation of thej-th phoneme.

Since we want to find the coefficientsa0j , a
1
j , ..., a

M
j for each

phonemej (M = 4 in our implementation), in a regression
manner, we can set the partial derivative of regression error R
with respect to them-th coefficientamj for the j-th phoneme
to zero. The least square fitting for regression is:

fi = C(i)−
J
∑

j=1

Di
j

[

M
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amj (tij)
m

]

,
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T
F =

n
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
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J
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2

,(4)

whereF is the column-concatenated vector formed for each
element fi. Since the unknownsamj are linear inF, the
problem is essentially a linear least-square fitting. By setting
all partial derivatives to zero and arranging Eq. (4), we can
obtain the following matrix representation:
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A =
[

a01 · · · aM1 · · · a0J · · · aMJ
]T

,

C =
[

C0 C1 C2 · · · Cn
]T

,

whereD is the dominance matrix,A is the coefficient vector
we want to solve, andC is the observed values at each timei,
so the minimum error to the regression fitting can be written in
the standard normal equation with the following matrix form:

(DT
D)A = D

T
C, (5)

whereD is ann× ((M + 1)× J) matrix, C is ann vector,
andA is an (M + 1)× J vector to be solved.

If we remove the assumption that eachmode of each
phoneme appears exactly once, multiple occurrences of each
mode of a phoneme have to be fitted to the same value. Hence,
we can rearrange the multiple occurring terms and make it
easier to solve. For example, if phoneme1 (with only one
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mode) appears twice as the first and third phonemes in the
phoneme sequence, then Eq. (3) becomes:

C(i) = Di
11
A11(t

i
11
) +Di

2A2(t
i
2) +Di

12
A12(t

i
12
) + ...

=
[

Di
11

+Di
12

]

a01 +
[

Di
11
(ti11) +Di

12
(ti12)

]

a11 + ...

+ Di
2a

0
2 +Di

2a
1
2(t

i
2) +Di

2a
2
2(t

i
2)

2 + ..., (6)

where 11 and 12 indicate the first and second times the
phoneme1 appeared. Note that the polynomial coefficientsamj
of the animeme functionAj(t) are the same and independent
to the occurrences.

By the above re-arrangement, we can remove the original
assumption that eachmode of each phoneme can appear
exactly only once, and rewrite the original term in Eq. (3)
with the summation of each occurrenceHj of the samemode
of phonemej as:

Di
j(t

i
j)

m ⇒
∑

Hj

Di
jh
(tijh)

m, (7)

where jh denotes theh-th time occurrence of themode of
phonemej.

C. Estimating Dominance Function

In the previous section to estimate the animeme function
Aj(t) of the j-th phoneme, we assumed that its dominance
function Dj(t) is known and fixed. In this section, we will
describe how to estimate the dominance functionDj(t) over
the regression, given that the animeme valueAj(i) at time i
is known and fixed, denoted asAi

j . Back to the definition of
the dominance function formulated in Eq. (1), for phonemej,
its influence control is affected byσj , which is unknown now.

Here, we want to minimize the regression Eq. (4) again as
we did in the previous section. However, since the parameter
σj for regression is non-linear, we need a more sophisticated
solver. Standard Gauss-Newton iterative solver is used to
approach the minimum of the regression errorR. As we
defined the residual error in the previous section, the Gauss-
Newton algorithm linearizes the residual error as:

fi = C(i)−

J
∑

j=1

Dj(t
i
j)A

i
j ,

F(σj + δ) ≈ F(σj) + Jδ, (8)

where tij = (i− sj) /dj is the normalized local time,F is
formed byfi but takes as input the influence controlσj for the
j-th phoneme,δ is the updating step for gradient direction of
the Gauss-Newton solver, andJ is the Jacobian matrix. Each
iteration of the Gauss-Newton algorithm solves a linearized
problem to Eq. (4), and after removing the terms that do not
dependent onδ, we get the follows:

J
T
J δ = −J

T
F,

σk+1

j = σk
j + δ. (9)

The Gauss-Newton algorithm repeatedly optimizes the regres-
sion error by updatingδ to σk

j at the k-th iteration, and
achieves linear convergence.

“SIL“

(start)

“G“ “R“ “AE“ “F“ “SIL“

(end)

Fig. 2. An animeme-graph example for synthesizing “Graph”. There are
multiple DAMs (modes) for one phoneme (with the same color). The suitable
sequence (denoted by solid circles and lines) is selected byA* algorithm.

D. Learning with Iterative Optimization

In the previous two sections, we showed how to minimize
the regression error by estimating the animeme functionAj(t)
and its hidden dominance functionDj(t). Since the entire
formulation is not linear and cannot be solved intuitively,
we employed an EM-style strategy that iterates between the
estimation of the animeme functionAj(t) and the optimization
for the dominance functionDj(t).

• The E-step involves estimating the polynomial coeffi-
cientsamj for each animeme functionAj(t) by solving a
linear regression using the standard normal equation.

• The M-step tries minimizing the regression error to
estimate the influence controlsσj by improving the non-
linear dominance functionDj(t).

First, when solving for theE-step, the initial influence
control parametersσj involved in Dj(t) are set to1. At
the M-step, where the Gauss-Newton algorithm linearizes
the function by iteratively updating the influence controlsσj ,
all parameters of the polynomial coefficientsamj are carried
from the first half of the iteration. The EM-style strategy
keeps iterating between theE-step andM-step until no more
improvement on regression error can be done. Convergence
of optimizingDj(t) is fast, but the effect of estimatingAj(t)
has more perturbation onσj . The number of iterations for
convergence is varying for different DAMs, which is directly
proportional to the quantity of the clustered control signals for
each DAM, but the process is an off-line computation in the
training phase separate from synthesis.

VI. SYNTHESIZING WITH DAM S

In the synthesis phase, we want to generate the output
control signal according to the input phoneme sequence. Since
some phonemes may have multiplemodes, we have to decide
which mode should be used for each phoneme. The goal to
construct the output animation control signal requires selecting
the most suitablemode for each phoneme, and then directly
use Eq. (2) to concatenate the DAMs in the sequence.

Giving a phoneme sequencej = 1, 2, ..., J and possible
modes DAMg

j (g = 1, ..., Gj , where Gj is the number
of modes) for each phonemej, the animemes can form an
animeme-graph as shown in Fig. 2. The selection of suitable
modes for the phoneme sequence can be treated as a graph
search problem, and A* algorithm is used in our implemen-
tation. Since we want to find a compromise between the
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TABLE I
THE MODELS USED IN THIS PAPER.

model vertex# face# control#
Afro-woman 5,234 5,075 7
Boy 6,775 6,736 7
Child 6,991 6,954 16
Old-hero 8,883 8,738 8
Court-lady 1,306 1,307 7

“P” “AA” “P” “Y” “AH” “L” “ER”

Fig. 3. The comparison of training data (the 1st raw) and the synthesized
results of DAM (the 2nd raw), Cohen-Massaro model (the 3rd raw), and
MMM (the 4th raw), while speaking “popular” by Afro-woman.

likelihood of themodes and the smoothness in the animation,
the cost of each node in the animeme-graph is set as:

E = wcEc + wsEs, (10)

whereEc is a data term, which represents the likelihood of
the mode DAMg

j in the training set linked with its previous
and next phonemes,Es is the smoothness term computing
theC2 smoothness on the joint frame of everyDAMg

j (g =
1, ..., Gj) of the current phonemej and everyDAMg

j−1
(g =

1, ..., Gj−1) of its previous phonemej − 1, andwc and ws

are the weights of the error terms. We usedwc = 1000 and
ws = 1 for all results in this paper.

VII. R ESULT

The training set involves 80 sentences and about 10 minutes
of speech context with unbiased content. In the training phase,
constructing the DAMs costs about 50∼60 minutes per control
on a desktop PC with an Intel Core2 Quad Q9400 2.66GHz
CPU and 4GB memory. For synthesizing a lip-sync speech
animation, the animation control signal formed by our DAMs
are generated in real time (i.e., 0.8 ms. per phoneme on
average). Table I shows the number of vertices, faces, and
controls of each model, respectively, used in this paper.

-0.6

-0.59

-0.58

-0.57

-0.56

-0.55

DAM

Cohen_Massaro

MMM

training data

Fig. 4. The comparison of the signal fitted in Fig. 3 by DAM, Cohen-
Massaro Model, and MMM with the captured one. The y-axis shows one of
the coordinates of a control.

Fig. 3 shows a comparison of the training data and the syn-
thesized results of ourdominated animeme model (DAM),
Cohen-Massaro model [37], and multi-dimensional morphable
model (MMM) [31], while speaking “popular” by using the
Afro woman model. Fig. 4 shows a part of signal fitting
for these results. The averageL2-norms for DAM, Cohen-
Massaro model, and MMM are 0.4724, 0.6297, and 0.5023,
respectively. This sequence represents continuous lip motion,
and the flow is from left to right. According to the training
data, the lips should be closed during the phoneme “P” and
opened for other phonemes appropriately. At the last frame of
the sequence, the mouth closes to prepare for the next word.
Note that the Cohen-Massaro model is implemented using
our DAM by settingM = 0 in Eq. (4), i.e., the polynomial
form is reduced to only the constant term. The formulation
of our dominance function (Eq. (1)) is very similar to their
original form but with the flexible extension that the shapes
of the phonemes can be varied. The reconstruction result of
the Cohen-Massaro model is too smooth at some parts in
the sequence, such that consecutive phonemes are greatly
influenced, i.e., they span too much. Hence, the features
of a few phonemes can be shown, but others are not as
prominent as they should be. In contrast, our DAM spans more
properly in range with respect to the training data. The MMM
formulates the fitting and synthesis as a regulation problem. It
fits each phoneme as a multidimensional Gaussian distribution
and forms the words or sentences as a path going through these
phoneme regions by minimizing an energy function containing
a target term and a smoothness term. The speech poses using
MMM have good timing but lack prominent features.

Fig. 5 shows two results of speaking two words - “apple”
and “girl” by using the Afro woman model. As shown in the
close-up view of the mouth, although the last phonemes of the
two words are the same (“L”), the lip shapes are different due
to coarticulation. Note that the lip shape for pronouncing the
phoneme “P” shows the mouth closes well, although some
other similar methods cannot due to the smoothness effect.
One can also notice that while pronouncing the phoneme
“ER”, the tongue is rolled. In general, the shape change of
the tongue is very hard to capture. However, since our method
uses animation control signal as the training data, once the
target model is designed well for performing such features,
our synthesis results can also keep these characteristics.

Fig. 6 and 7 show two other results with different models:
the old hero speaks “old man” and the boy speaks “top of
the world”. All of them have their typical styles. Comparing
the lip shapes of the two models while pronouncing the
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“SIL” “AE” “P” “AX” “L”

“SIL” “G” “ER” “L”

Fig. 5. Result of speaking “Apple” (upper) and “Girl” (lower) by Afro-woman.

“SIL” “OW” “L” “D”

“M” “AE” “N” “SIL”

Fig. 6. Result of speaking “Old Man” by Old-hero.

phoneme “L”, their lip shapes performed in two different
ways because ofcoarticulation and their characteristics. To
keep the models’ characteristics while synthesis, our method
is character (model) dependent. Each character’s DAMs should
be trained by its own animation control signal. Models with
similar controls can use the same DAMs. Of course, artists can
also use another model’s trained DAMs to make a prototype
of a novel model, and then refine the model for training its
own DAMs. This can speed up the training preparation time
while keeping the quality of the training data.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we propose a new framework for synthesiz-
ing lip-sync character speech animation in real time with a
given novel speech sequence and its corresponding texts. Our
method produces fairly nice transitions in time and generates
the animation control parameters that are formed by ourdom-

inated animeme models(DAMs), which are constructed and
modeled from the training data in sub-phoneme accuracy for
capturingcoarticulation well. Through an EM-style optimiza-
tion approach, the DAMs are decomposed to the polynomial-
fitted animeme functions and their corresponding dominance
functions according to the phonemes. Given a phoneme se-
quence, the DAMs are used to generate the animation control
signal to animate the character (face) model in Maya or
similar modeling tools in real time while still keeping the
character’s exaggerated characteristics. Moreover, the DAMs
are constructed by the character controls instead of absolute lip
shapes, so it can perform better training/synthesizing results
and is suitable to be integrated into existing animation pipeline.
By using the Facial Animation Parameters (FAPs) defined in
MPEG-4 for training and synthesis, our approach can be easily
extended to support MPEG-4 facial animation [42].

Even though the quality of the synthesized lip-sync char-



8

“SIL” “T” “AA” “P” “AH”

“V” “OH” “W” “ER” “L” “D”

Fig. 7. Result of speaking “Top of The World” by Boy.

acter speech animation may not be perfect as compared with
that of animation created manually by an artist, the synthesized
animation can still easily be fine-tuned, since the automatically
generated animation control signal is lip-synchronized and
can be used directly in Maya or similar animation tools. By
extending the phoneme dictionary, our method can also be
used to produce multilingual lip-sync speech animation easily.
Furthermore, since our method can synthesize acceptable and
robust lip-sync character animation in real time, it can be used
for many applications for which prior methods are inadequate,
such as lip-sync animation prototyping, multilingual animation
reproduction, avatar speech, mass animation production, etc.

Our model still has some weaknesses, such as that it cur-
rently infers the dynamics of motion solely from the training
data set. If the training data set does not contain speech similar
to the synthesis target, the results may be inaccurate. For
example, if the training data set contains only ordinary speech,
it will be unsuitable for synthesizing a singing character,
because the typical phoneme behavior for singing a song varies
greatly from the ordinary speech and imposes more challenges
for dynamics modeling. A second weakness is that in our
DAMs, we used a function of Gaussian-based form to model
the dominance functions. A potential problem is that while
sining a song, certain phonemes may extend indefinitely with
dragging sounds. It is not only difficult for a speech recognizer
to identify the ending time, but also the Gaussian-based form
cannot accommodate such effects. One possible solution is to
model the dominance functions with greater variability and
non-symmetric models.

APPENDIX A
CROSS-MAPPING

Although the input of our system is animation control
signal, to ease the efforts for adjusting the character (lip)
model, we also provide a method to cross-map the captured
lip motion to the animation control signal. After the lip motion
is captured, the key-lip-shapesLk are identified first, which
can be pointed out by the artist or by using an unsupervised

clustering algorithm, e.g. [40]. The captured key-lip-shapesLk

are then used to fit the captured lip motionLi for each frame
i by using the Non-Negative Least Square (NNLS) algorithm
to obtain the blending coefficientsαi

k. This process can be
expressed as the following constrained minimization:

min ‖Li −

K
∑

k=1

αi
kLk‖

2, ∀αi
k ≥ 0,

whereK is the number of identified key-lip-shapes. The above
clustering and fitting process for the captured lip motion needs
to be performed only once. If the target character model has
some well-defined bases, it is better to assign the key-lip-
shapes to the bases manually, since the blending coefficients
αi
k can be used as the control signalCi directly without further

processing.
To cross-map the input captured lip motion to the target

character model, the identified key-lip-shapesLk are first used
to guide the artist to adjust the verticesV on the lips of
the target character model to imitate the key-lip-shapesLk

while keeping the character’s characteristics. The numberof
adjusted vertices should be equal to or more than that of
the character controlsC (i.e., ‖V‖ ≥ ‖C‖) for solving the
constrained minimization in the next paragraph. Then, the
blending coefficientsαi

k are used to blend the adjusted lip
verticesVk for key-lip-shapesLk to obtain the lip vertices
V

i for each framei via:

V
i =

K
∑

k=1

αi
kVk.

Instead of using the lip verticesVi for training directly,
for better training/synthesis results and animation pipeline
integration, the training and synthesizing are performingon
character controls. Assuming there areK animation controls
Ck ∈ C, which can be used to drive the lip motions of the
target character model, the animation control signalCi

k
for

each framei and controlk can be obtained by fitting the lip
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verticesVi as the following constrained minimization:

min ‖Vi −

K
∑

k=1

V(Ci
k)‖

2,

whereV(·) denotes the transfer function from control signal to
lip vertices, and each animation controlCi

k
∈ Ci is constrained

to [0, 1]. Again, it is solved by the NNLS algorithm.
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