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Abstract

We present an algorithm that carries out alternate
Hough transform and inverted Hough transform to estab-
lish feature correspondences, and enhances the quality of
matching in both precision and recall. Inspired by the fact
that nearby features on the same object share coherent ho-
mographies in matching, we cast the task of feature match-
ing as a density estimation problem in the Hough space
spanned by the hypotheses of homographies. Specifically,
we project all the correspondences into the Hough space,
and determine the correctness of the correspondences by
their respective densities. In this way, mutual verification
of relevant correspondences is activated, and the preci-
sion of matching is boosted. On the other hand, we in-
fer the concerted homographies propagated from the lo-
cally grouped features, and enrich the correspondence can-
didates for each feature. The recall is hence increased.
The two processes are tightly coupled. Through iterative
optimization, plausible enrichments are gradually revealed
while more correct correspondences are detected. Promis-
ing experimental results on three benchmark datasets man-
ifest the effectiveness of the proposed approach.

1. Introduction

Establishing correspondences among two or more im-
ages has attracted great attention in the field of computer
vision. Being a key component for image analysis and
understanding, it is essential for a wide range of applica-
tions, such as object recognition [5], image retrieval [30],
3D reconstruction [25], image enhancement [16] and edit-
ing [2, 22]. Despite the great applicability, at least two diffi-
culties hinder the advance in establishing correspondences
of high quality. First, the predominant paradigm has been
starting from local features to yield the candidates of corre-
spondences. Although the design of local descriptors has
gained significant progress, methods of this category of-
ten suffer from corrupted matches caused by large defor-
mations, illumination changes, or clutter backgrounds. It
leads to low precision in feature matching. Second, many
refined methods, such as [1, 19, 27, 34], tackle this prob-

T

BPLR

BPLR

BPLR

Figure 1. (Top) We project correspondences into the transforma-
tion space, and distinguish correct (red) and wrong (black) corre-
spondences by their densities. (Bottom) Potential (green) corre-
spondences are incrementally inferred by exploring density distri-
butions of transformations grouped by BPLRs [17].

lem by ensuring the geometric consistency. These methods
typically do not scale very well due to high-order geometric
checking. They often work on a pre-selected, small subset
of correspondence candidates, and result in low recall.

We aim to address the two aforementioned problems si-
multaneously. Our approach is developed upon the insight
that nearby features on the same object typically share sim-
ilar homographies if they are matched correctly. It follows
that their homographies tend to gather together in the trans-
formation space. Besides, each wrong matching is usu-
ally wrong in its own way. It implies that the density of
each correspondence in the transformation space can ver-
ify its correctness. We leverage this property and cast the
task of feature matching into a density estimation problem.
Specifically, we identify correct correspondences by com-
paring the densities among mutually exclusive correspon-
dences, i.e., those violating one-to-one constraints. On the
other hand, it is allowed to dynamically recommend poten-
tial correspondences by exploring the density distributions
of locally grouped features. See Figure 1 for an illustration.

The proposed approach carries out Hough transform
and inverted Hough transform alternately to establish ro-
bust feature correspondences. It can distinguish itself with
the following three main contributions. First, every cor-
respondence candidate is projected into the Hough space
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spanned by the transformations. In addition, we grow
BPLRs (Boundary Preserving Dense Local Regions) [17]
for each feature. Only the correspondences associated to
features within the same BPLR are considered in Hough
voting. In this way, mutual verification with relevant corre-
spondences boosts the precision of matching. Furthermore,
it makes the complexity of geometric checking independent
to the number of correspondences, and leads to one order
speed-up in matching. Second, an inverted variant of Hough
transform is developed. The inverted Hough transform rec-
ommends each feature additional transformations by inves-
tigating density distributions of nearby features covered by
the same BPLR. These transformations enable the dynam-
ical construction of potential correspondences. It allows
relevant features to propagate their transformations to each
other until consistency is reached. It considerably increases
the recall of feature matching. Third, our approach is com-
prehensively evaluated and compared to the state-of-the-art
systems on several benchmark datasets. The superior per-
formance demonstrates its effectiveness.

2. Related Work
The literature of feature correspondence is quite exten-

sive. Our review focuses on those that are relevant to the
development of the proposed approach.

Matching via feature descriptor. Point-to-point match-
ing with local feature descriptors is a principal way for cor-
respondence problems. Some of notable researches, e.g.,
[3, 4, 6, 21], have brought about significant progress in this
area. Although these local descriptors are distinctive and
powerful, the general conclusion is still that no descriptor
is sufficient for handling variation caused by complex com-
binations of nonrigid deformations, illumination and pose
changes, in nowadays vision applications.

Matching via graph partition. One way to address
matching ambiguity with additional geometric checking is
to cast feature correspondence as a graph matching prob-
lem. By defining an objective function based on both photo-
metric similarity and pairwise geometric compatibility be-
tween correspondences, promising results via graph match-
ing have been demonstrated [11, 12, 18, 33]. However,
these methods typically work well on one common object
with simple backgrounds, and do not deal with the cases
that multiple sets of common features appear. As men-
tioned in [20], graph matching is sensitive to corrupt cor-
respondences and outliers. In addition, high computational
cost may restrict its applicability, especially when solving a
generalized eigenvalue problem is required.

Matching via clustering. Research efforts on clustering-
based mechanisms have been made to handle unconstrained
matching cases. Bottom-up clustering can integrate lo-
cally adaptive constraints to aggregates coherent bundles

of matches. Cho et al. [8] carry out object-based image
matching via hierarchical agglomerative clustering. Ya-
cov et al. [16] adopt a coarse-to-fine scheme and the co-
herence property of images to achieve dense matching. On
the other side, Hai et al. [20] propose a top-down cluster-
ing approach to detect dense neighborhoods on an affinity
graph, and find common visual patterns among images. De-
spite the effectiveness, one major weakness of these meth-
ods lies in their time-complexity. Moreover, the optimal
cluster numbers, criteria of cluster merging, and similarity
thresholds typically vary from image to image.

Matching via voting. RANSAC [14], a geometric verifi-
cation model, can be incorporated with local descriptors to
enhance the performance. Yuan et al. [32] treat each corre-
spondence as a voter, and maintain an affinity matrix to en-
code how these correspondences vote each other according
to their compatibilities. Like RANSAC, their method only
supports single object matching. Tolias and Avrithis [26]
offer a variant of Hough transform for multi-object match-
ing. They rank the correspondences by adopting the mech-
anism of pyramid match [15]. Their method evenly quan-
tizes the transformation space for fast matching. However,
the transformations of correct correspondences often dis-
tribute irregularly. It may result in accuracy degradation.
Our approach is a voting-based system, and can be distin-
guished by the advantage that the complexity of Hough vot-
ing for each feature is independent to the number of cor-
respondences. Furthermore, it dynamically enriches corre-
spondences, and overcomes the low recall problem caused
by working on a pre-selected, small subset of initial corre-
spondences.

Correspondence enrichment. Most feature correspon-
dence methods work with a small subset of pre-selected cor-
respondences. Correspondence enrichment hence becomes
an important task. Match-growing methods, e.g., [11, 13],
propagate individual matches to nearby regions based on
local appearance, but their performances heavily depend on
the quality of initial matching. On the other hand, Cech et
al. [7] develop a region-growing algorithm to distinguish
correct and incorrect correspondences. Cho et al. [10] in-
stead describe a progressive graph matching framework to
enrich initial matching. However, the yielded correspon-
dences by their approach are biased to the density of fea-
tures, and may be noisy due to diverse feature distribu-
tions in the two matched images. In contrast, our method
works on feature bundles guided by BPLRs, so the con-
certed transformations with high probability are transferred
through mutually relevant features. It turns out that the in-
formation can be propagated more efficiently and the result-
ing candidates of correspondences are much more targeted.



3. Problem Definition

Given two images IP and IQ, two sets of feature points,
V P = {vPi }N

P

i=1 and V Q = {vQi }N
Q

i=1, are respectively ex-
tracted. The region and the center of feature vi ∈ V P ∪V Q

are denoted by Si and xi, respectively. The appearance
of vi is described by feature vector ui, and its orientation
θi is estimated by a dominant orientation in the gradient
histogram [23]. The product space C = V P × V Q repre-
sents all the possible correspondences. Our goal is to find
as many as possible correct correspondences in C.

3.1. Transformation space

The local shape and the position of feature vi can be de-
scribed by a 3 × 3 matrix T (vi), which specifies an affine
transform of vi with regards to the normalized patch [23]:

T (vi) =

[
A(vi) xi

0> 1

]
, (1)

where A(vi) is a 2× 2 non-singular matrix.
Given a feature pair vPi ∈ V P and vQi′ ∈ V Q, the relative

transformation Hii′ from vPi to vQi′ can be derived as

Hii′ = T (vQi′ ) ∗ T (v
P
i )
−1. (2)

In this work, we represent a feature correspondence as a
triplet mii′ = (vPi , v

Q
i′ , Hii′), i.e., two features in the oppo-

site images and their relative transformation. As Hii′ is a
6-dof affine homography, mii′ can be considered as a point
in the 6-dimensional transformation space.

3.2. Distance metric in the transformation space

Given two correspondences mii′ = (vPi , v
Q
i′ , Hii′) and

mjj′ = (vPj , v
Q
j′ , Hjj′), the projection error of mjj′ with

respect to mii′ can be defined as

djj′|ii′ = ||xQ
j′ − ρ(Hii′

[
xP
j

1

]
)||, (3)

where ρ(
[
a b c

]>
) =

[
a/c b/c

]>
. (4)

It checks if Hii′ projects xP
j around xQ

j′ .
For a pair of correspondences mii′ and mjj′ , they are

considered compatible if the corresponding homographies
are similar. We hence adopt the re-projection error for dis-
similarity measure, i.e.,

d(mii′ ,mjj′) =
1

4
(djj′|ii′+dii′|jj′+dj′j|i′i+di′i|j′j). (5)

Note that it is symmetric and is used to compute the dis-
tances among correspondences in the transformation space.

Correspondence
Initialization

Correspondence Homography

Inverted Hough transform for correspondence recommendation

Hough transform for homography verification

Figure 2. The procedure of the proposed approach.

4. The Proposed Approach
Features with compatible geometric configurations are

mutually dependent in matching. We investigate feature de-
pendence via BPLR detector [17], and cast feature matching
as a density estimation problem. The proposed approach
carries out this idea by alternate Hough and inverted Hough
voting. While the former discovers the consistent homogra-
phies by projecting correspondences into the transformation
space, the latter incrementally recommends potential cor-
respondences driven by the concerted homographies. The
procedure of our approach is illustrated in Figure 2. In the
following, we first describe the construction of initial corre-
spondence. Then the Hough and inverted Hough transforms
for feature matching are introduced, respectively.

4.1. Initial correspondence candidates

Our approach starts from the construction of initial cor-
respondence candidates. For each feature vPi ∈ IP , we find
its r potential matchings {vQik}

r
k=1 in IQ according to their

appearance similarity and with the constraint that none of
the r matchings highly overlap. This can be accomplished
by sorting the similarity scores and sequentially exclud-
ing those that have strong overlapping with the prior ones.
Specifically, we evaluate the similarity between two fea-
tures by the SIFT descriptor, i.e., ||uP

i − uQ
ik
||, while over-

lapping is measured by the area of intersection divided by
the area of union, i.e., SP

i ∩ S
Q
ik
/SP

i ∪ S
Q
ik

. With {vQik}
r
k=1,

the set of initial correspondences associated with vPi is

Mi = {miik = (vPi , v
Q
ik
, Hiik)}rk=1, (6)

where Hiik is the relative transformation from vPi to vQik .
This process is repeated for each feature in IP . Then the set
of initial correspondences is constructed by

M =

NP⋃
i=1

Mi. (7)

The initial setM is of size |M| = r ×NP . It contains
many corrupted matchings since there exists at most one
correct correspondence in eachMi. In complex matching
tasks, it is usually the case that only a small subset of correct
correspondences in C is included in M. Empirically, we
set r = 5 in all the experiments, because the precision of
correspondences decreases rapidly when r is larger than 5.



(a) Input images (b) Hough voting: 207/222 (c) Inverted Hough voting: 337/369

Figure 3. Feature matching by our approach. (a) Input images IP and IQ, together with all the feature points and some of the BPLRs
(contours) in IP . (b) Hough voting and its comparison with SIFT. 207 out of 222 correct correspondences inM are identified via Hough
voting. White lines denote the correct correspondences detected by both approaches. Red and cyan lines are the correct correspondences
by only Hough voting and the nearest SIFT searching, respectively. (c) Inverted Hough voting. It recommends 147 (= 369− 222) correct
candidates and leads to additional 130 (= 337− 207) correct correspondences (green lines) detected by the successive Hough voting.

4.2. Hough transform for homography verification

The goal at this stage is to detect the correct correspon-
dences in M, which is either the initial correspondence
set or the enriched set by the following stage. We inves-
tigate the property that the transformations of correct cor-
respondences are concerted while those of incorrect corre-
spondences are different in their own ways. Hough voting
for homography verification is employed since it can han-
dle a high percentage of incorrect correspondences and de-
tect correct correspondences via density estimation. Specif-
ically, the relative transformation of each correspondence is
treated as a point in Hough space, and it is considered as a
hypothesis about the underlying homography of interest.

Despite its robustness, Hough transform is developed
upon the assumption that the hypotheses are a sum of inde-
pendent votes, and thereby neglects the spatial dependence
among features. As pointed out in [31], choosing proper
voters is critical in Hough transform, especially when voters
are dependent. We are inspired by the fact that nearby fea-
tures on the same object are mutually dependent, and group
relevant correspondences via BPLR detector [17], which re-
spects object boundary and captures the local shape of an
object. It turns out that the performance of Hough voting is
remarkably boosted. Furthermore, only relevant, small-size
correspondences are involved in density estimation, instead
of the wholeM. It significantly speeds up the process.

To formalize, let B = {b`} be the set of the detected
BPLRs in image IP . For each feature vPi ∈ IP , we use
π(vPi ) ⊆ B to denote the set of BPLRs that cover the cen-
ter of vPi . For vPi that is not covered by any BPLR, i.e.,
π(vPi ) = ∅, we just simply assign it to the nearest BPLR,
though this case rarely occurs because BPLRs are densely
sampled. We then cluster features relevant to vPi by check-
ing if they reside in at least one common BPLR, i.e.,

G(vPi ) = {vPj |π(vPi ) ∩ π(vPj ) 6= ∅}. (8)

We assume that the grouped features with high probabil-
ity undergo similar transformations in matching. It follows
that the correspondences relevant to vPi in Hough voting can

be collected by

R(vPi ) =
⋃

vP
j ∈G(vP

i )

Mj . (9)

According to Eq.(6), there exists at most one correct cor-
respondence inMi. Hough voting as well as voters R(vPi )
are adopted to pick the most plausible correspondence asso-
ciated with feature vPi . Specifically, it is accomplished by
normalized kernel density estimation (KDE):

m∗ii′ = argmax
mii′∈Mi

1

|R(vPi )|
∑

m∈R(vP
i )

exp (−d(mii′ ,m)

σ
),

(10)
where σ is a positive constant whose value is set as the aver-
age distance among the existing correspondences. Note that
the normalization term 1/|R(vPi )| does not affect the result
in Eq.(10), but it is required in comparing densities across
feature points.

The procedure of correspondence selection is repeated
for each feature in image IP . It results in NP selected cor-
respondencesM∗ = {m∗ii′}N

P

i=1. We then sort them accord-
ing to their associated densities in Eq.(10), and return the
top correspondences by a proper threshold. In the experi-
ments, our approach is evaluated by precision-recall curves,
plotted with various thresholds. An example of the verifica-
tion results by Hough voting is shown in Figure 3b.

4.3. Inverted Hough transform for correspondence
recommendation

While Hough transform identifies correct correspon-
dences M∗ ⊆ M and boosts the precision in matching,
the goal of inverted Hough transform is to enrich M so
that the recall can be increased. The locally clustered fea-
tures by BPLRs have consensus transformations and can as-
sist each other in finding plausible correspondences. We
investigate this property and develop the inverted Hough
transform, which allows grouped features to propagate their
homographies to each other and recommends each feature
concerted correspondences by exploring the propagated ho-
mographies.



Algorithm 1 The procedure of the proposed framework
1: Input: Feature sets V P and V Q; Max iteration T
2: Output: Matched correspondencesM∗
3: Initialize correspondence sets {Mi}N

P

i=1 via (6)
4: while t < T do
5: M∗ ← ∅
6: for all vPi ∈ V P do
7: Detect correspondence m∗ii′ ∈Mi via (10);
8: M∗ ←M∗ ∪m∗ii′ ;
9: for all vPi ∈ V P do

10: Identify recommended feature vQk via (13);
11: Construct mik = (vPi , v

Q
k , Hik);

12: Mi ←Mi ∪mik;
13: Sort elements inM∗ with thresholding;

For each vPi ∈ IP , we search the relevant features,
G(vPi ) in Eq.(8). Each of these features delivers a hypoth-
esis about the homography of vPi . These hypotheses are
collected in

M̃i = {m∗jj′ |vPj ∈ G(vPi )}, (11)

where m∗jj′ is the selected correspondence of vPj through
Hough voting. The set M̃i may contain outliers caused by
corrupted matchings. Hence, we pick the homography of
the most plausible correspondence m̃jj′ ∈ M̃i for recom-
mendation, where

m̃jj′ = argmax
m∗

jj′∈M̃i

∑
m∈M̃i

exp (−
d(m∗jj′ ,m)

σ
). (12)

Suppose that the relative transformation of m̃jj′ is Hjj′ .
The projected region of vPj from IP to IQ through Hjj′ is
denoted by S. The matching feature in IQ is determined by

vQk = argmax
vQ
k ∈V Q

S ∩ SQ
k

S ∪ SQ
k

. (13)

It follows that correspondence mik = (vPi , v
Q
k , Hik) is rec-

ommended, i.e., Mi ← Mi ∪ mik. This process is done
for each feature in IP . The resulting correspondence setM
in Eq.(7) is incrementally enriched. An example of inverted
Hough transform is given in Figure 3c.

Hough voting and its inverted variant are tightly coupled.
While the former densely detects correct correspondences
from the enriched candidates, the latter provides harmonic
enrichment owing to better detection results. The conver-
gency of the alternate voting procedure is guaranteed. The
number of all the correspondences, i.e., C, is finite and fixed.
At each iteration, the number of correspondence candidates,
i.e.,M, is monotonically strictly increasing. SinceM is a
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Figure 4. Comparison among various approaches on each test im-
age of the SNU dataset. Precision is the fraction of correct corre-
spondences among the detected matches. Recall is the fraction of
correct detections among the correct correspondences in C.

subset of C, the iterative procedure must converge. Empir-
ically, it rapidly converges after a few iterations, typically
2 ∼ 4, in all our experiments. We conclude this section by
summarizing our approach in Algorithm 1.

5. Experimental Results
We conduct three sets of experiments for performance

evaluation. First, our approach is compared with other state-
of-the-art techniques in identifying multiple common ob-
jects. Second, we show the advantages of our approach
in progressive enrichment of correspondence candidates.
Third, we show that our approach can collaborate with dif-
ferent detectors and descriptors, and match features across
images with large illumination changes.

5.1. Matching with multiple common objects

The SNU dataset [11] is used in the experiments. It con-
tains six image pairs. The appearance of multiple common
objects, partial occlusions, and clutter backgrounds make
matching over this dataset quite challenging. However, it
provides a good test bed to manifest the importance of ge-
ometric verification and correspondence recommendation,
since the initial correspondences are not reliable enough.



(a) SM: 392/551 (b) CVP: 504/551 (c) HVIV: 744/774

(d) RRWM: 34/104 (e) ACC: 76/104 (f) HVIV: 126/147

(g) SM: 267/504 (h) CVP: 475/504 (i) HVIV: 738/784
Figure 5. The matching results of various approaches on (a)∼ (c) image Books, (d)∼ (f) image Bulletins, and (g)∼ (i) image Toys.
In each figure, the approach as well as its performance (correct detections / correct candidates inM) are shown.

We follow [24] and consider a correspondence to be cor-
rect if the area of the intersection of the predicted and true
regions divided by the area of the union of the two regions
is larger than 40%. We measure the performance of fea-
ture matching by both precision and recall. While precision
is the fraction of detected correspondences that are correct,
recall is the fraction of correct correspondences that are de-
tected. For each adopted approach, all the detected corre-
spondences are ranked by its own criterion, such as the ele-
ment values of the eigenvector in spectral matching [18] or
the estimated density Eq.(10) in our approach. With proper
thresholds, the performance of each approach is presented
by a precision-recall curve.

Our approach, Hough voting and inverted Hough vot-
ing (HVIV), is compared with other state-of-the-art sys-
tems, including descriptor-based approach, opponent SIFT
(OSIFT) [28], clustering-based approaches, common visual
pattern discovery (CVP) [20] and agglomerative correspon-
dence clustering (ACC) [8], and graph-based approaches,
spectral matching (SM) [18] and reweighted random walks
(RRWM) [9]. Besides, we implement one additional base-
line Hough voting (HV), which carries out only the Hough
transform part of our approach. For the sake of fair com-
parison, all the approaches work on the same feature points,
each of which is detected by the Hessian affine detector [23]
and depicted by the opponent SIFT descriptor [28]. The
initial correspondence set of all the approaches is selected
according to the nearest search of the opponent SIFT.

The quantitative results are summarized in Figure 4. The
performances of the approaches based on graph matching,

i.e., SM and RRWM, are not stable due to their sensitivity
to outliers. In this dataset, wrong correspondences are of-
ten far more than correct ones in initialization. The baseline
OSIFT does not work well, since the unary local features
are not sufficient to handle clutter backgrounds and com-
plex deformations and transformations of objects. Instead,
CVP, ACC, HV and HVIV, improve the performances by in-
vestigating geometric consistence. Among them, our HVIV
considerably outperforms CVP, ACC and HV in most cases.
This is because our approach clusters mutually relevant fea-
tures for correspondence verification and recommendation.
It avoids the adverse effect of distracting outliers, resolves
the limitation of initial candidate construction, and thus
achieves both high precision and recall. Some matching re-
sults of various approaches are shown in Figure 5. It can
be observed that our approach gives to more accurate and
dense correspondences.

5.2. Incremental correspondence enrichment

In this experiment, we show the advantages of our
approach in incremental correspondence enrichment, and
compare it with baseline Hough voting (HV) and the pro-
gressive graph matching framework (PROG) [10], which is
one of the best approaches in correspondence enrichment.

The benchmark dataset collected by Cho et al. [10] is
adopted for performance evaluation. It is composed of 30
image pairs. Each of them has one common object for
matching. The experiments are conducted with the same
settings as those described above, including the use of the
same local feature detector, descriptor and evaluation crite-



(a) RRWM+PROG: 21/24 (b) HV: 22/22 (c) HVIV: 56/61

(d) RRWM+PROG: 73/74 (e) HV: 69/69 (f) HVIV: 116/125
Figure 6. The matching results by RRWM+PROG, HV and our HVIV. While RRWM+PROG and HV detect almost all the correct corre-
spondences, our approach further improves the results by progressively enriching the correspondence set.

ria. As PROG provides a general mechanism for progres-
sive graph matching, it can work with any graph-based ap-
proaches. RRWM [9] is adopted here as the graph-matching
module of PROG. The parameters k1 and k2 pertain to
PROG are set as 10 and 5, respectively.

With the same detector, descriptor, matching criterion,
and initial correspondences, Figure 6 displays the cor-
rect correspondences detected by RRWM+PROG, HV and
our HVIV, respectively. Note that the results obtained by
RRWM+PROG are different from the ones reported in orig-
inal paper, this may be because the matching results are
sensitive to the adopted detector, descriptor and matching
criterion.

It can be observed that HVIV remarkably increases the
number of true candidate matches, and results in better
matching outcomes. This is because the objective func-
tions of correspondence verification and recommendation
steps in our approach are both derived upon densities and
hence coherent. The two steps complement each other to
jointly lead to better results. Besides, the grouped features
by BPLRs faithfully identify relevant voters in both Hough
and inverted Hough transforms. It excludes distracting vot-
ers and provides recommendations of high quality. With
the same precision, our approach averagely achieves 54.0%
growth rate in true correspondences when comparing with
HV, and 44.4% growth rate when comparing with PROG.

5.3. Plug-in with other feature descriptors

Our approach can be treated as a geometric filter. It drops
the corrupted correspondences by geometric checking and
enhances the matching by propagating concerted transfor-
mations among dependent features. It can be applied to var-
ious types of feature descriptors, and improve the perfor-
mance. In the experiment, our approach collaborates with
the LIOP descriptor [29], and establishes correspondences
across images with drastic illumination changes.

We perform the quantitative analysis on complex il-
lumination dataset used in [29]. It contains two image

pairs Desktop and Corridor. Besides, the image pair
Leuvenwith exposure change from Oxford dataset1 is also
adopted. For each image pair, the Hessian-affine detector is
used to localize feature positions. The initial matching can-
didates are constructed by LIOP, which is designed to be
invariant to dramatic illumination changes.

HV and our HVIV are applied to the correspondences
discovered by LIOP. The results in form of precision-recall
curves are plotted in Figure 7. Despite the robustness to il-
lumination changes, the performance of LIOP can still be
enhanced by ensuring homography consistency and enrich-
ing correspondence candidates.

6. Conclusion and Future Work
We have presented a simple but effective approach that

carries out alternate Hough voting and its inverted variant to
establish correspondences in complex matching tasks, and
boosts the performances in both precision and recall. It for-
mulates feature matching as a density estimation problem.
Through iterative optimization, more correct correspon-
dences are detected from the enriched candidates, while
plausible enrichments are gradually revealed by the prop-
agated beliefs in the concerted homographies. Besides, we
group mutually dependent features via BPLRs. It not only
increases the accuracy but also speeds up the process. The
proposed approach is comprehensively evaluated on three
datasets coupled with different descriptors. The promis-
ing results consolidate the usefulness of our approach. For
future work, we will apply our approach to handling co-
segmentation, image synthesis and reconstruction. This is
because high-quality, dense matches generally facilitate the
accomplishments of these applications.
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Figure 7. Plug-in comparison with the LIOP descriptor on three image pairs.
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