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Abstract

Facial animation is traditionally considered as important but tedious
work for most applications, because the muscles on face are com-
plex and dynamically interacting. Although there are several meth-
ods proposed to ease the burden from artists to create animating
faces, non of these are fast and efficient in storage.

This paper introduces a framework for synthesizing lips-sync fa-
cial animation given a speech sequence. Starting from tracking fea-
tures on training videos, the method first find representative key-
shapes that is important for both image reconstruction and guiding
the artists to create corresponding 3D models. The training video is
then parameterized to weighting space, or cross-mapping, then the
dynamic of features on the face is learned for each kind of phoneme.

The propose system can synthesis lips-sync 3D facial animation in
very short time, and requires very small amount storage to keep
information of the key-shape models and phoneme dynamics.
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1 Introduction

With the popularity of 3D animation movie and video games, fa-
cial animation is becoming more important than ever, in order to
lively animate the virtual character. It is, however, a laborious task
to create a 3D face model, let alone a sequence of models as an
animation. Facial animation is difficult to sculpt, because the corre-
lation and complexity of the muscle on the face is so high that few
mathematical model can approximate it without extensive computa-
tion. Although there exists a wide range of work based onphysical
simulation, the computation cost is still exorbitant to general users.

A less flexible but affordable alternative isperformance drivenfa-
cial animation that the motion of the actors are somehow transferred
to the virtual character, such asThe Polar Expressand Monster
House. Although these animation have successfully convinced our
imagination, they are not reusable and new performance is required
each time at creating novel sequence.

In this paper a method that build a re-usable model for animat-
ing faces with speech is proposed. While traditional performance-
driven facial animation can only drive the virtual face to deform ac-
cordingly, the proposed method, starting with performance to train
the speech deformation space, can synthesize any new animation
given novel speech sequence. The method not only synthesize ani-
mation respecting to the visual-phoneme correspondence, but it also
refine the co-articulation effect that is poorly modeled in similar
previous work, and the highlight islip-sync speech animation.

The input of the proposed method requires a video sequence, some
feature point positions in the video sequence, and a mere number of
key-face model that is made respecting to some key-shapes in the
video sequence found by the method. An animated speech anima-
tion given novel speech sequence is generated as output.

The major contributions includes:
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1. A method for key-shape identification that traditionally can
not be achieve without much parameter tuning and trial-error
process is proposed. Our method is fast and require only one
pass.

2. A cross-mapping that transfer animation from one subject of
the performer to the other, such as virtual character, is illus-
trated. While most previous work primarily focus on weight-
space tuning using non-linear function, such as Radial Basis
Function, we propose the use of exponential-map that have
physical meaning.

3. An attempt to animate 3D models with training data merely
from 2D videos is made, while previous work making efforts
on image space lips-sync video speech animation.

2 Related work

The bookMPEG-4 Facial Animation: The Standard, Implementa-
tion and Applications[Pandzic and Forchheimer 2002] provides a
clear categorization of fields dealing with facial animation (FA).
High-level FA is separated from Low-level FA through the use
of control parameterizations, and the following subsections will
briefly describe several techniques in each fields, as in Fig. 1

Figure 1: This figure briefly summarizes Low-level FA and High-
level FA, while most research combine methods from two cate-
gories.

2.1 Low-level FA

Low-level FA deals with methods to change the facial geometry
and/or appearance in time and the control relies on the extrinsic pa-
rameters. Important approaches include Direct Parameterizations,
Pseudo-Muscle/Muscle Model, and Interpolation. Direct param-
eterizations usually refers to the creation of facial model based
on the intuition of the artists, and mostly appeared as spline sur-
faces widely used in animation industry. While the most time-
consuming, direct parameterizations also is the most popular tech-
nique.

In recent year the Interpolation approach starts to gain its popularity
due to its simplicity and also the possibility provided to use highly
detailed models, yet there are still areas that cannot be modeled
without the Muscle Model.



2.1.1 Muscle based approaches

Muscle based approaches strive to mimic the minutia on face
through bio-chemical and anatomic details. Choe et al.[Choe et al.
2001] uses two kinds of muscle with finite element method to learn
the captured motion signal. A significant effort is devoted to estab-
lish the relationship between muscle actuation and surface defor-
mation. Their heuristic approach, however, lacks anatomical struc-
ture and need additional effort to adjust correlation near the mouth.
More recently, Sifakis et al.[Sifakis et al. 2005] propose an anatom-
ical accurate approach to analyze the signals of muscle activation
which correspond to the sparse landmark on the face. Although
their result is particularly useful in physical simulation, as illus-
trated in the paper from Sifakis et al.[Eftychios Sifakis and Fedkiw
2006], the speed of this sort is prohibitive unaffordable when time
is a major concern.

2.1.2 Interpolation based approaches

Interpolation based approach poses another advantage over that of
muscle based: simplicity and efficiency. Even the amount of blend-
shape might be huge (more than hundreds of shape were used inThe
Lord of the Ringsfor theGollumcreature), the Interpolation based
community still gains its popularity. The Facial Action Coding Sys-
tem (FACS) by Ekman and Friesen[Ekman and Friesen 1977] pro-
vide a guideline for sculpting the blend-shape, where 72 Action
Units of distinct expressive faces are categorized, and this tech-
nique is also used in the film industry, for exampleMonster House.
Among the several methods using Interpolation approach, there can
still be a fundamental distinction between image-based and model-
based.

Image-based FAhas the advantage in data acquisition as opposed
to that of 3D-Model based, and the algorithm work efficiently when
projected to the PCA space. Ezzat et al.[Ezzat et al. 2002] show
how to reanimate a person by decomposing video sequence into
key-shape space, and propose a Gaussian-Phoneme Model to syn-
thesize new speech animation using Multidimensional Morphable
Models(MMM) by Jones and Poggio[Jones and Poggio 1998].
Their work is extended by Chang and Ezzat[Chang and Ezzat 2005]
to transfer model to different faces with existing trained model.
Buck et al. [Buck et al. 2000] also shows how to blend sample
shapes for hand-drawn animation with parameterizations using De-
launay triangulation in the feature space.

Model-based FA include work by Chai et al.[xiang Chai et al.
2003], Guenter et al.[Guenter et al. 1998], and Pighin et al.[Pighin
et al. 1998], and etc,. PCA based method by Blanz and Vetter[Blanz
and Vetter 1999] extends MMM[Jones and Poggio 1998] to 3D
model using morphable model database with feature-controls, and
their method is able to reconstruct and animate photograph. Zhang
et al.[Zhang et al. 2004] propose a FaceIK framework with blend-
shape scanned from their space-time stereo approach. They also
introduce adaptive face segmentation to reduce interference from
unimportant blend-shapes. In order to reduce the blend-shape inter-
ference, Lewis et al.[Lewis et al. 2005] minimize the error incurred
by selected control vertices with user controllable scaling factor.

2.2 High-level FA

High-level FA controls the parameters derived from Low-level FA
modeler to direct the face motion. The most precise but also the
most time-consuming is manual editing, with artists introduce nu-
merous key-frames to capture the non-linearity on facial motion. To

reduce cost incurred from labor, two mainstreams are Performance-
driven and Speech-driven approaches.

2.2.1 Speech-driven

Speech-driven approach has its advocates because the fact that they
are mostly generative model, i.e. animators can generate new FA
without tedious parameterizations from motion capture.

Papers by Bregler et al.[Bregler et al. 1997] and Brand[Brand 1999]
are two important precursors in this field. Ezzat et al.[Ezzat et al.
2002] build a Gaussian based phoneme model and synthesize an-
imation given phoneme aligned speech. The result of previously
built model can be transferred to a novel person with a short training
clip and synchronized speech as described in the paper by Chang
and Ezzat[Chang and Ezzat 2005]. The original model parameters
are adjusted in accordance with the novel video corpus.

Cao et al.[Cao et al. 2004] propose a fast searching algorithm in
their motion database for synthesizing new animating facial se-
quence. The eFASE system by Deng and Neumann[Deng and Neu-
mann 2006] also synthesizes new faces from recorded motion in
database, and a path searching algorithm in the phoneme space us-
ing Isomap projection is proposed.

2.2.2 Performance-driven

Performance-driven approaches usually starts with a motion cap-
ture process. The signals of captured data are transferred as con-
trols for reanimating FA with a cross-mapping function. Finally the
cross-mapped signals are sent to Low-level FA modeler as rigs to
modify geometry data. Among the many performance driven ap-
proaches, the issue of cross-mapping is usually at heart to solve.

Williams ”Performance-Driven Facial Animation”[Williams 1990]
is the very first research in this field. In the course note[Pighin and
Lewis 2006], several survey of techniques for cross-mapping func-
tion are presented. The simplest function form is linear as in the
report by Chuang and Bregler[Chuang and Bregler 2002]. Vlasic
et al. [Vlasic et al. 2005] use multi-linear, or tensor, model to con-
struct a statistical model for human faces, the dimension can be
identity, expression, viseme, and etc,. The cross-mapping is done
with motion capture from one identity and transfer to another within
framework.

Choe et al.[Choe et al. 2001] build the inverse relationship with
radial basis function (RBF), and also Pyun et al.[Pyun et al. 2003],
Na and Jung[Na and Jung 2004], and Deng et al.[Deng et al. 2006],
by estimating muscle actuation profile from the performance, so
that performance signal can directly be translated as the simulation
parameters.

An interesting technique proposed by Buck et al.[Buck et al. 2000]
to transfer expression from performer to an NPR character. They
project the expression space on to the first two principal component,
where Delaunay triangulation is subsequently applied. Whenever
a new novel face is to be estimated, barycentric coordinate to its
nearest three key-shapes is calculated. This coordinate is afterward
translated to blending weights.

2.2.3 Geometry Transfer

Expression Cloning by Noh and Neumann[Noh and Neumann
2001] and Deformation Transfer for Triangle Meshes by Sumner



and Popović[Sumner and Popović 2004] are two papers that use di-
rect geometry transfer function rather than parameterizing the trans-
fer function. Noh and Neumann[Noh and Neumann 2001] estimate
the local geometry property and transfers the motion vector to the
target mesh with constraints that respect the locally defined boxes in
the two models. Sumner and Popović[Sumner and Popović 2004]
extract the local gradient from the source and estimate similar gradi-
ent on the target mesh. Local misalignment of the triangle gradient
is solved using global optimization framework with vertex connec-
tivity as constraint, small imperfection on the mesh can, however,
amplified, as noted in the course note[Pighin and Lewis 2006].

2.3 Summary

In this paper, a framework incorporating Interpolation and Speech-
Driven animation is presented. The technique used in Interpola-
tion will be presented in Section 3, where a brief discussion on
linear/non-linear function will be given. As for high-level facial
animation, the statistical analysis for speech and its corresponding
key-frames will be studied in Section 5. Before the analysis, some
preprocessing issue will be discussed in Section 4.

3 Preliminary

3.1 Animation Reconstruction from Scattered Data

Observation

One key process, to drive the 3D model animate, is to control the 3D
model with certain given constraints. In light of cost/convinences,
constraints may be sparse but should be representative enough for
surface reconstruction. One popular solution is Radial Basis Func-
tion(RBF), where intended values are interpolated from kernel-
convoluted distances to scattered observation. The problem of an-
imation reconstruction could, however, be relaxed in a way when
we already know some configuration of the surface. PCA based
techniques have been proposed to drive 3D model, yet numerous
aligned examples have to trained in advance. (try to cite SCA 2006
by UW, and SCAPE) Example-based model interpolation provide
an alternative without extensive preprocessing. Throughout this pa-
per, we will always focus on processing triangle mesh.

An explicit way to represent triangle mesh is with the coordinates
of its vertices in the global frame, and to reconstruct model surface,
we can transform the problem into minimization, givenK example
meshes{P1, ...,PK}:

α = argminα∗
1 ,...,α∗

k
‖C−

K

∑
i=1

Xiαi‖

whereC is the constrained vertices position,Xi ∈ Pi is the con-
strained vertices position in example mesh, andα is the intended
weights to blend these example meshes as reconstructed mesh.
Problem with such approach is its lack of capturing local shape
property and relation, and when interpolating extreme poses, dis-
continuity in surface will occur due to the global frame position
misalignment, and sample result is shown in Fig. 2 middle. While
linear-interpolation works well withvery dense examples, it usually
increase the complexity and cost to acquire these models.

To describe mesh better, it is suitable to represent mesh as a vector
in another feature space based oh their local shape property. We
use deformation gradient, as the paper by Barr[Barr 1984] but in a
discrete form, to represent triangle mesh.

Figure 2: Left: Original model to be approximated. Middle: Inter-
polated model using global frame without local-shape-preservation.
Right: Non-linear interpolated model solved with Eq. 2

3.2 Deformation Gradient

Given a mesh in reference poseP0 and a deformed meshP, both
havingn vertices andm triangles in identical connectivity structure,
a deformation gradient is the Jacobian of the affine transformation,
from a triangle inP0 to P.

Denote the affine transformationΦ j of the triangleτ j to map points
it is definedv j

k ∈ τ j
,k = 1,2,3 as:

Φ j(v j
k) = T jv j

k + t j

T j is the rotation/scale/skew component andt j is the translation.
Taking Jacobian ofΦ j with respect tov j results inT j alone. the fea-
ture vectorFi of the meshPi is constructed by concatenating Jaco-
bian of each triangles in a column form. Getting position back from
feature vector consisting only Jacobian is done through integration,
as described by Barr[Barr 1984], or by Sumner et al.[Sumner and
Popović 2004] for discrete form. In computation, the discrete form
is as describe as:

V = argminv∗‖Gv−F‖

whereG is built from the reference poseP0 andv is the vertices
postilion we want to recover from feature vectorF .

Using deformation gradient,Fi for examplePi, as mesh descriptor
for animation reconstruction given constraints, we can formulate
the problem mathematically as :

α = argminα∗
1 ,...,α∗

k
‖Gv−

K

∑
i=1

Fi ∗αi‖

and the minimization is subject toX ∈ v be equal to constraintsC.
Although this description of mesh can preserve local shape prop-
erty, artifacts can still appear at interpolating two surfaces with large
deviation in orientation where no intermediate examples are avail-
able.

Non-linear interpolation, specifically exponential-map or log-
matrix blending used in this paper, is designed to solve the prob-
lem. Matrix representing the Jacobian of affine transform can be
factored into rotation and skew components throughpolar decom-
positionby Shoemake and Duff[Shoemake and Duff 1992], thus the
Jacobian of affine transform for triangleτ j in meshPi is separate as
T i j = Ri j Si j . The rotation componentRi j is blended in log-matrix



space whereas the skew componentSi j in Euclidean space. The
non-linear convolution is computed as follows:

M(T j
,α) = exp(

K

∑
i=1

log(Ri j )αi)(
K

∑
i=1

Si j αi)

Using exponential map to blend example meshes, we can get our
result mesh as :

V,α = argminv∗,α∗‖Gv−M(F,α)‖ (1)

subject toX ∈ v be equal to constraintsC. Details and solution to the
non-linear minimization is refereed to Sumner et al.[Sumner et al.
2005], where a Gauss-Newton method was utilized to linearizes the
equation and solved in a iterative manner. In latter discussion, result
α will be used as parameter for our training. Givenα, we are able to
recover position v by first computing the deformation gradientF̄ =
M(F,α), and plugging in Eq.2 to solve directly without iteration.

V = argminv∗‖Gv−M(F,α)‖ (2)

4 Capture and Preprocessing

A SONY DCR TRV 900 video camera is used for the capture pur-
pose. The camera is placed in frontal direction toward face of the
tracked subject. The subject is placed with 15 landmarks around the
lips and jaw for easier tracking, as in Fig 3, though not absolutely
necessary. The result contains about 10 minutes video, approxi-
mately 18000 frames. The subject is asked to speak contents that
elicit no emotion, and these contents also includes bi-phone and
tri-phone to reflect co-articulation.

4.1 Feature Tracking

The result of recording video is subsequently tracked using a cus-
tomized tracker. Although various tracking algorithm exist, Lucas
Kanade Tomasi(KLT) tracker, a direct tracking method based on
constancy of feature brightness, is used in the paper.

Other popular tracker such as Active Appearance
Model(AAM)/variation, a trainable model that separates structure
of images from texture and learns basis using PCA, is ideal for
on-line purpose, is, however, not necessary for our database
building.

Figure 3: 18 landmarks are placed on the face, 3 for position stabi-
lization, and 15 are used for tracking (12 around lips, and 3 on jaw).
Sometimes mis-tracked/lost features require the user to bring back.

Figure 4: The figure indicate the overview of our system including
the data capture and processing step.

4.2 Phoneme Segmentation

Each frame of the recorded sequence corresponds to a phoneme the
subject speaks, and given transcript, the CMU SphinxII can decode
the audio and cut the utterance into a sequence of phoneme seg-
ments. The CMU SphonxII use 51 phonemes, including 7 sounds,
1 silence, and 43 phonemes, to construct the dictionary.

The result of preprocessing after feature tracking and phoneme seg-
mentation contain a list of data of 15 dimensionality for each frame
associated with a specific phoneme Sphinx II defines.

5 Algorithm

5.1 Overview

After the capture of the performer and subsequent tracking and
phone alignment, the artist is ready to create certain 3D face mod-
els that can be useful for interpolating examples. In section 5.2
a discussion of how to cluster training data without knowing how
many groups needed is given, where affinity propagation [Frey and
Dueck 2007] is exploited. The result instructs artists to sculpt 3D
face models that correspond to certain key-shapes in the training
sample, and a method in section 5.3 is introduced to solve the fol-
lowing analogy:

Trainingexp :: Trainingneut = ? :: FaceModelneut

Such analogy is solved with the algorithm from Sumner et
al.[Sumner et al. 2005], and we can obtain a high dimensional pa-
rameter for each frame of the training data that correspond to each
phoneme the performer speak. After that, relationship can be built
with Gaussian estimation for each phoneme, similar to the work by
Ezzat et al.[Ezzat et al. 2002]. In section 5.4, an energy function is
presented to synthesize any novel speech for new parameters that
can composite a sequence of 3D facial animation.

5.2 Prototype Image-Model Pairs Identification

Since our method highlightsexample-based interpolation, repre-
sentative prototype lips-shapes as key-shapes have to be identified.
Without lose of generality, fewer key-shapes are desired, since to



sculpt 3D models as key-shape is painstaking; more key-shapes are
needed, to vividly span the spectrum of facial animation. For conve-
nience, the representative key-shapes are selected from the training
data set, and later used for any-shape reconstruction.

However, finding representative key-shape is not easy, and tradi-
tional K-center algorithm does not work efficiently and requires
many runs. Researchers may sometimes reduce finding prototype
key-shapeSi into the following minimization problem :

min∑
j
|| f j −

K

∑
i=1

Siwi j ||
2 (3)

In the formulation, f j corresponds to a frame in our data set,wi j
is the weight to linear blend key-shapes{S1, ...,SK} approximating
frame f j . The formulation, though simple, has one potential prob-
lem on one hand that each cluster is not normalized to influence the
entire data set minimization; on the other hand, there are no other
choices. Besides, the number of key-shapesK is still unknown in
advance. In this paper, the following questions need to be answered:

1. How many prototype key-shape are needed?

2. What are these key-shapes and the clusters key-shapes define?

3. Which data point belongs to which cluster?

Ezzat et al.[Ezzat et al. 2002] heuristically determineK with prior
experimental experience, cluster data set using k-means algorithm,
and assign prototype key-shapes to data pointsnearestto cluster
centers.

Chuang and Bregler[Chuang and Bregler 2002] proposes the data
with Maximum spread along principle componentis preferred as
key-shape, althoughK is still determined heuristically. Others like
Convex-hull, though perform no better than Max. spread along
PCA, still indicates a viable alternative.

In solving the three problem simultaneously,Affinity Propagation
[Frey and Dueck 2007], is utilized to help the identification ofK,
these key-shapes, and clusters.

Affinity Propagation

Affinity propagation is a bottom-up algorithm iteratively merges
points/sub-clusters into clusters. In between data point, two sorts
of messages are passed,ResponsibilityandAvailability.

Responsibility r( j , i) sent from data pointj to exemplar, or key-
shape in our case,i are messages reflects the accumulated evidence
for how well-suited pointi is to serve as the exemplar for pointj ,
taking into account other potential exemplars for pointj .

Figure 5: This figure illustrates two kinds of messages are sent to
each data point.

Figure 6: This figure briefly show how data set are clustered
through affinity propagation.

Figure 8: Affinity propagation surprisingly finds shapes thatare
very close but indeed different. The image is an overlay of two
close group.

Availability a( j , i) sent from exemplari to point j are messages
reflect accumulated evidence for how appropriate it would be for
point j to choose pointi as exemplar, taking into account the sup-
port from other points that pointi would be exemplar.

The Figure 5 show how messages are sent and and data set is itera-
tively clustered in Fig.6.

The algorithm is fast and work without much parameters tuning.
The only input is a pair-wise similarity table that specifies how each
point is similar to others. Self-similarity indicates how much evi-
dent a point believes itself as an exemplar, and in this paper the
value is set to the minimum of pair-wise similarity, as instructed
in Frey and Dueck[Frey and Dueck 2007] for smaller number of
clusters.

Affinity propagation successfully separates 18000 tracked speaking
lips-shapes into 21 clusters, in Fig. 7, with each defines a group
either small or large. It is less likely for other methods to findsmall
yet representative groupssince most error minimization are done
with respect to the entire data set and error are biased to favor large
group.

There is also an interesting finding that affinity propagation sepa-
rates groups with very subtle difference, that when talking the lips
shape are not symmetric but biased to either left or right, as Fig.8,
due to the unsymmetrical muscle activation on human.

It might be interesting but not practical for artists to sculpt such
minutia on 3D models, and further reduction on the number of key-
shapes is desired. Merging groups with minimum distance on key-
shapes is performed iteratively until either a threshold is reached or
a sudden increase in reconstruction error occurs (see Fig.10), and
finally 7 key-shapes,as in Fig. 11, are identified. A comparison of
affinity propagation with direct minimization on Eq.3 is given in
Fig.9. Finally the artists create 3D facial model, as in Fig. 11, with
lip-shapes according to the 7 key-shapes identified.

There is another algorithm, namely Mean-Shift Clustering



Figure 7: The total key-shapes found by affinity propagation.As seen, there are many looks very similar yet actually different.

Figure 9: The result of key-shapes from directly minimizing Eq.3,
where the almost 8 evenly keyed close to open result was found.
Certain important key-shapes likewooor fooare missing.

Figure 10: This graph show the reconstruction of reducing thenum-
ber of redundant basis, as in red line. The cost of removing each
basis, by choosing least group distance, is shown in blue. The er-
ror of reconstruction keep steady until 7 basis remains. The basis
deletion cost climbing up steadily and reach a plateau of high cost
around 7.

[Georgescu et al. 2003], worth mentioning to identify these
representative groups without knowingK in advance. James
and Twiggs[James and Twigg 2005] successfully identifies the
bones/joints in articulated animating sequence, and the algorithm is
also exploited by Park and Hodgins[Park and Hodgins 2006]. Diffi-
culty with such alternative is the un-intuitive and data dependent pa-
rameterBandwidth, but nevertheless we also identify 20 key-shapes
in the data set, compared with 21 using affinity propagation though
the computation is slower.

Figure 11: One-to-one mapping of the key-shape from video se-
quence and the artists created 3D meshes.

5.3 Training Sample Parameterizations and Cross

Mapping

After identifying key-shapes, the sequence of 3D animation, given
the sculpted 3D model, can be created according to the training
video given the key-shape images. The motion of the training video
is cross-mapped to 3D model as discussed in this section.

The jargonCross Mappingin facial animation usually refers to
transfer the motion of one subject to the other. The typical case is
an actor giving a performance and the goal is to use such to animate
a virtual character. The user may desire a such function, if any, to
transfer even very minute details, and such function is adjustable so
that one performer can drive a numerous virtual character without
too much complication.

Pyun et al.[Pyun et al. 2003], Na and Jung[Na and Jung 2004], and
Lewis et al.[Lewis et al. 2005] use Radial Basis Function for fine-
tuning the weight-space in each dimension and require more train-



ing samples to explore the function form. Buck et al.[Buck et al.
2000] use convex hull technique that each training faces is project to
a plane, with three nearest key-shapes, the barycentric coordinates
are obtainable and transferred to NPR faces for rendering. Chuang
and Bregler[Chuang and Bregler 2002] propose a cross mapping al-
gorithm most representing ours, yet the parameterized weights are
directly used to linearly interpolate 3D models.

The goal in this paper is that the performer utters some words, and
the sculpted 3D models should be interpolated in a way as if it
speaks.

Given the key-shape lips imagesS = {S1, ...,SK} and its corre-
sponding 3D modelsP = {P1, ...,PK}, a sequence of 3D facial
animation can be built based on the original video sequenceF =
{ f1, ..., fn}. Key ideas are to parameterize video sequence using
S into W = {w1, ...w18000} ∈ ℜK , transfer the coefficients to 3D
model space, and use the coefficients andP to construct the corre-
sponding sequence.

The first is to parameterize video sequence from image space into
weight spaceW usingS, and is formulated as:

min‖ f j −
K

∑
i

Siw ji ‖
2
, ∀ f j ∈ F (4)

The solution of this minimization is straight forward and a standard
linear least square solver can apply. The obtained weight, though
best fit for least error reconstruction, is not suitable for further edit-
ing and transfer. One important reason is over-fitting that when
minimizing error, some weights will be much larger and others have
to be negative to counter balance. If weight transfer is desirable
then large or negative weight should be avoided. A non-negative
least square (NNLS)[Lawson and Hanson 1974] solver is efficient
and available that solve the following constrained minimization:

min‖ f j −
K

∑
i

Siw ji ‖
2
, ∀w ji ≥ 0, ∀ f j ∈ F (5)

The weightW can be directly used asα in Eq 2. Such direct trans-
fer will, however, introduce an un-pleasing result because the non-
linearity nature of projection as we introduce in Fig. 12. The ob-
served feature points undergoes a projection that maps aconstant
angular movement to acosinefunction, and while uniformly sam-
pled on the angular space, the projection will result in a seemingly
clustered sampled at degree 0. This non-linearity phenomenon is
typically modeled using RBF, yet another alternative is proposed to
model this projection.

Figure 12: The projected point positionx is the function ofcos(θ ),
so the constant angular speedω will result in asinefunction, rather
a constant speed forx.

One feasible solution is to select the corresponding features on the
3D model, blend them usingW in the projection plane, i.e., x and y
component only, and use these transferred projected points as con-
straints to plug in Eq.1 solving forα. Thus the result of 3D anima-
tion is α = {α1, ...α18000} defining the cross-mapped reconstruc-
tion parameters. Two primary reasons using the technique from
Sumner et al.[Sumner et al. 2005] are the following:

1. Since the observation is two dimensional images, and by as-
suming fake orthogonal projection, the prior from examples
and exponential-map provides fairly acceptable result when
only two, rather than three, dimensional constraints are spec-
ified.

2. The use of exponential-map provides linearity that is useful
for density estimation and multi-linear analysis. Take Fig. 12
for example: When the angular speed is constant, samples on
angular space is uniform from{0...

π
2}, yet when projected,

over 2
3 , i.e. 60 degree, of samples are between{0, ...,

1
2} and

leading a false density estimation.

The non-linear cross-mapping function using exponential-map
gives an alternatives for mapping motion from one subject to an-
other, while providing physical meaning of projection. Result of the
3D animation corresponds to the training video can subsequently
used for estimating the probabilistic model phonemes.

5.4 Phoneme Space Construction and Trajectory

Synthesis

After cross mapping a sequence ofα = {α1, ...,α18000} asso-
ciate with phoneme tag on each frame, the statistical analysis for
phoneme setΦ = {Ph1,Ph2, ...,Ph51} can be performed for den-
sity estimation:

µPhi
=∑

j

α j

Ni
, ΣPhi

=∑
j

(α j −µPhi
)(α j −µPhi

)T

Ni
, ∀α j → tag= Phi

whereNi is the number of training frame that correspond to the
phonemePhi , and the density is modeled with multi-dimensional
Gaussian:

pµPhi ,ΣPhi
(X) =

√

1
(2π)K‖Σ‖

exp{−
1
2
(X−µ)TΣ−1(X−µ)}

Meanwhile, any speech{ph1, ..., phT},∀pht ∈ Φ of lengthT tags
can be synthesized with a sequence ofx = {α1, ...,αT} by the min-
imizing the following objective error function E consists of a data
term and a smoothness term:

E = (x−µ)TDTΣ−1D(x−µ)+λxTWTWx (6)

The data term is a measurement of normalized distance from each
phoneme distribution center, and the smooth term prevent the path
from being changing too excessively. In the objective function,x
is a vertical concatenation of individualαt at time stampt, µ con-
structed from phoneme center that the speech is about to pass, andΣ
from diagonal phoneme covariance, assuming independent in each
dimension without loss of generality.
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D is a normalization term de-emphasizing longer duration phoneme
that might influence the error minimization. W is a smoothness
term that also models the co-articulation effects.
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Taking the derivative of of Eq.6 yields the following equation that
can be solved using standard linear system packages:

(DTΣ−1D+λWTW)x = DTΣ−1Dµ (7)

The result from Eq. 7 synthesizes a pathx = {α1, ...,αT} that goes
through each phoneme region spoken, and each time stampα in the
path can be plugged into Eq. 2 to get the 3D model and finally an
animation.

The valueλ plays a crucial role in the minimization.The physical
meaning of the term can be interpreted as the degree of freedom
to reach the steady state of a phoneme when speaking a word. If
the value increased, the path tends to be smooth and the 3D model
speaks as if he can not change the mouth too much. On the other
hand when the value decreased, the models speaks likes a robot that
would not be recognized as real person speaking but just remain
fixed at each phoneme and changing shape suddenly at transition.
This value is fine-tuned until appealing result is found, and current
value is set to 10.

6 Result

Our testing platform is a laptop computer with Pentium-M 2.13GHz
and 1.5GB RAM, where the testing 3D face model contains 3,201
vertices and 5,825 triangles.

The proposed framework is fast and storage efficient. To synthe-
size a path of a novel speech of about 10 seconds requires less
than a few milliseconds. Given the non-linear blending parame-
ters{αi1, ...,αi7} for each framei, the computation time required
to solve Eq. 2 is 0.3 to 0.4 second. The density estimation for pa-
rametersα andΣ are 51 by 7 table of floating points each, and the
examples required to synthesize animation are merely seven plus
one for reference.

Currently the performance bottleneck lies in the termM(F,α) to
blend feature vector non-linearly and the huge linear system of
Eq. 2. Sumner et al.[Sumner et al. 2005] the authors suggest an

Figure 13: Top: Tracking video; Middle: Cross-mapped animation
using the 7 key-shapes found in Sec 5.2; Bottom: Synthesized ani-
mation using utterances of the tracking video.

improved Cholesky factorization by inspecting the sparse struc-
ture. To accelerate the linear system solver the performance of
the functionM, platform dependent Basic Linear Algebra Subrou-
tine (BLAS) and storage optimization might apply to increase ma-
trix/vector operation.

Fig. 13 shows certain frames of the tracked video, its cross-mapped
animation, and synthesized result produced from the utterance inde-
pendent of the tracking results. Comparing the animation, one can
notice that the synthesized shapes may not be identical to the cross-
mapped, which is made in correspondent to the tracking video and
shall be used as ground truth. Inspecting the speech animation in
the accompanying video, some artifacts can be observed when com-
pared with the directly cross-mapped 3D animation. While largely
recognizable of what is being spoken, it is still quite vague at some
fine details at transition of mouth shape between open and close
shape. Another un-natural feel is that the shapes of certain viseme
do not reach the exact shapes as people expect, such as’/b’ or ’/p’ .

We currently impute the phenomena to the design of synthesizing
speech trajectory without preserving the sharpness. It might be
solvable with more delicate design on the energy function, though
still not known how to do at now.

7 Conclusion and Future Work

In this work a complete framework to synthesize speech animation
of a subject given utterance is presented. 3D facial animation, tra-
ditionally considered as difficult to rig for motion, is automatically
generated without the user even to touch model editing tools.

In this paper, affinity propagation is exploited to identify represen-
tative key-shapes that are used for 3D model creation, weighting
space parameterizations, and new sequence synthesis.

A new method that originally used in mesh pose-editing is applied
to weighting space parameterizations. While previous work primar-
ily working on fine tuning un-intuitive kernel function parameters,
the proposed parameterizations do not require any user interven-
tion.

Finally a method, simple but without lose of generality, for esti-
mating phoneme density is presented. Solving animation for sub-
sequent novel speech is reduced as a trajectory synthesis problem
that is easy to solve with standard linear system library.



The most tentative future is adding expression onto the face.While
traditionally expression and speech are processed in separate, the
two should be modeled in correlation.

Speaking without emotion is robotic and achieving no persuasion
without expression. Currently bilinear analysis, with speech the
content and expression the style, on two dimension image is well
studied Tenenbaum and Freeman[Tenenbaum and Freeman 2000]
and Chuang et al.[Chuang et al. 2002], Wang et al.[Wang et al.
2004] and multi-linear model by Vlasic et al.[Vlasic et al. 2005].
Applying bilinear analysis on 3D facial models is very tentative.

Currently the density estimation could be further improved by in-
specting the property of speech. Although gaussian distribution
is general for most cases, the data term measuring distance to the
gaussian distribution center in trajectory synthesis might not truly
reflect the way people speak. Because the density estimates samples
from binary segmented speech, intermediate sample between two
phonemes can be modeled with better techniques capturing such
effects.
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