Content-Aware Geometry Image Resizing

Shu-Fan Wang Yi-Ling Chen Bing-Yu Chen Tomoyuki Nishita
Chen-Kuo Chiang Shang-Hong Lai National Taiwan University The University of Tokyo
National Tsing Hua University Taiwan, R.O.C. Email: nis@is.s.u-tokyo.ac.jp
Taiwan, R.O.C. Email: robin@ntu.edu.tw

Email: f shufan,yilin,ckciang,l@@cs.nthu.edu.tw

Abstract—Polygonal meshes are widely used to represent the 513" 513 168 168
shape of 3D objects and the generation of multi-resolution models
has been a signi cant research topic in computer graphics. In
this paper, we demonstrate how to generate multi-resolution
models through 2D image processing techniques. The goal of
generating multi-resolution models is accomplished by resizing
the corresponding geometry images of 3D models. By de ning
appropriate energy on 2D images re ecting the importance of
3D vertices, we propose a modi ed content-aware image resizing
algorithm suitable for geometry images, which achieves the
preservation of salient structures and features in 3D models as
well. We evaluate various image resizing techniques and show
experimental results to validate the effectiveness of the proped Original Model Simplified mesh
algorithm.
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Fig. 1. Multi-resolution models by resizing geometry imagesftlis the
I. INTRODUCTION original 3D mesh with corresponding geometry image of $i8 513

The simpli ed 3D surface obtained by geometry image resizingh® size
Polygonal meshes have been the most common represgnes 168 is shown in the right side.

tation for 3D geometric models and widely used in vari-
ous applications in computer graphics. With the advance in
modern 3D scanning technology, it has been made possitdehniques. On one hand, there are already a rich variety of
to create and store massive polygonal models with relatimgethods readily to be applied to analyze and adjust 2D images
ease (e.g. [8]). The rapidly increasing scale of data sé&dm the other hand, working in 2D domain instead of 3D may
challenges the subsequent processing tasks, e.g. raadisir brings benets, such as simplicity in computation or opti-
or rendering. However, the over-sampled 3D data are nuization. Similar ideas can be found in some previous works,
always necessary in every application. As a result, to ereahape matching [7] and surface completion [9]. In this paper
multi-resolution models have been an essential reseapib tovarious image resizing techniques are examined to evaluate
for geometric modeling and computing. their applicability for resizing geometry images. Paricly,

Through the past few decades, we have seen signi cahecontent-aware image resizif@AIR) methods [1], [14] are
advance in the development of surface or mesh simpli catiqraid more attention for the purpose of preserving the ingmart
algorithms. The goal of surface simplication is to obtairstructures and features during surface simpli cation.
a model of reduced complexity while maintaining a good The rest of this paper is organized as follows. In Section
approximation to the original model. The existing methods, we examine the surface simpli cation problem by resgin
mainly exploits local operators, e.g. edge contractionestex geometry images and introduce the proposed algorithm most
clustering, to incrementally alter the current 3D modeld arsuitable for this task. We evaluate various image resizing
local optimization is carried out to reduce the error introeld techniques and compare with the proposed method by showing
by the local operations, such as by minimizing tipeadric experimental results on several 3D models in Section Ill.
error metric(QEM) [3], [4]. Global optimization technique hasSection IV concludes this paper.
also been utilized to simplify 3D meshes [6] but conseqyentl
it also involves in solving a computationally dif cult prégm. ~ !l- SURFACE SIMPLIFICATION BY RESIZING GEOMETRY

In [5], Gu et al. developed thgeometry imagewhich rep- IMAGES
resent 3D surfaces by storing vertex coordinates as imagé pi  Although this work was rstly motivated to solve surface
values. This research was rstly motivated by the intuitthat simpli cation problem by image resizing techniques and the
geometry images of different resolutions actually coroesb ideal scenario is to make as least modi cation on the 2D tech-
to 3D models of different sizes. As a result, we aim to explor@ques as possible, the surface representation (i.e. gepme
the possibility of establishing a link between the traditib3D images) to be dealt with is intrinsically different from ol
problem, i.e. surface simpli cation, and 2D image procegsi images after all. For example, it is important to adjust the



Fig. 2. High gradient energy in geometry image and normal map edh w
represent the features of a 3D object.
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contents of a geometry imagégm Wwithout destroying the rig. 3. High gradient energy does not always correspond dairttportant
topology of the corresponding 3D model, which is implicitlyarea in a natural image.

encoded inl gim . As a result, in order to design an effective

simpli cation method based on geometry images, several ) o .
considerations are summarized as below. density of 3D vertices and shape variation of the corresipgnd

a) Cost De nition:: Typically, a simpli cation algorithm 3D moc_iel. Despite thg simplicity, the weighted combination
de nes a certain measure of cost to guide the simpli catioR gradient energy derived from the geometry image and the
process, e.g. QEM [3]. Similarly, to achieve feature preselpormal map well represents the saliency map of a 3D model:
vation, it will be necessary to have some saliency measure
re ecting the importance of 3D vertices. E= Egm*+(1 )Enmmp; (1)

b) Simpli cation:: With appropriate cost de nition, we
still need a mechanism to drive the simpli cation process. |

this Work, it is attemp_ted to r_esort_ to a _certain optimi_zatio Egim = (g(l gim )2+ ( @@yl gim )2;
technique that determines which pixels (i.e. mesh vei}ites caf R|§3:B 9q @)
be retained or eliminated. Again, it is essential to mainthe Enmp = (& &mp )2+ ( @@yl Smp )%
structure and topology of the original 3D models. c2f RiGB g

¢) Reconstruction: To alter the geometry of 3D modelswhereE g, andE,m, denote the accumulated gradients over
unavoidably introduces errors on the simpli ed models.slt ithe R, G, B channels from the geometry imadgm and
thus signi cant to compute a good position for the verticéthe normal mapl mp , respectively. Fig. 2 demonstrates an
that survive during the simpli cation process. In the case @xample of the saliency map corresponding to a 3D model,

image resizing, to blend several pixels to form a new one m@here the importance features can also be visually inspecte
produce good results for real images, but is not necessarily

good in terms of the quality of simpli ed meshes. B. Proposed Resizing Algorithm
In this paper, we propose to adopt the warping-based
image retargeting algorithm originally developed in [14} f
The key to CAIR methods [1], [14], [13], [10], [11] is geometry image resizing. The problem can be formulated as
to change image sizes by eliminating redundant pixels whielving a constrained linear system so as to recover the new
retaining the important ones. However, it is not always @asy position (X;; ;yi; ) of each pixel(i;j ) under three types of
de ne an appropriatsaliencymeasure for all types of naturalconstraints. Take the calculation of horizontal displaeam
images. Take Fig. 3(b) as an example, simple gradient enefgy instance. First, each pixel is assumed to be at a xed
does not always re ect the important regions in an image falistance from its left and right neighborss; x; 1; =1 and
the case of highly complex and textured background. Whes.1; X;; = 1. The second constraint is to map each pixel to
considering the simpli cation of 3D meshes, it is usuallya location similar to the one of its upper and lower neighbors
preferred that the redundant vertices (e.g. with highempdian  Xij  Xij +1 = 0. The third constraint ts the warped image
density) will be removed with higher priority and the featurto the dimensions of the target image sizg; = 1 and
points (e.g. with sharp orientation change) tend to bemethi Xw; = Wiarget , WhereW andWigget denote the width of
Recall that geometry images are 2D arrays storing variothe original and resized image, respectively.
surface properties, such as 3D coordinates and normalrgecto Given the saliency map ofgim and lnmp , @an important
as theRGB values. Therefore, the gradients of a geometmixel is preferred to be warped to a new position occupied
image and a normal map actually indicate the local samplity only itself while less important ones can be safely blende

A. Saliency Measure



In each resizing step, we adaptively decide the image size
of the next step by the energy distribution. Note that, is
square and the saliency map rangegQril]. The width and
height in thek-th step can be adaptively decided by:

q
Wi = Hyg = max( jf (i;j )jEk l(i;j ) > gj;Wtarget );

(6)
where theEK 1 is the saliency map obtained from the inter-
mediate images of thk  1)-th step and is a thresholding
parameter controlling the step size, whict0i& in our default
Fig. 4. Resize a geometry image frdas0 500 to 105 105 by using s_ettlng. _B”e y spealgmg, Equation (6) counts Fhe nu_mber of
(a) progressive resizing and (b) direct resizing [14]. pixels with energy higher than to decide the dimensions of

resized images. To summarize, the main steps of the proposed
simpli cation algorithm are given as below:
with other unimportant neighbors. Therefore, the constsai 1) compute the gradient energy map. (Section 11-A)

should be weighted by the corresponding energy value: 2) Determine the target image si28/i¢ Hy). (Eq. 6)
Eij (Xij  Xi 1j)= Ejj; 3) Warplgim andlnmp to the size of W;; H;).
Ei;j (Xi+1 i Xij )= Ei;j : (3) 4 Ifw; = Wtarget andH; = Htarget , stop. Else go to
Eij (Xij  Xij+1)=0: Step 1.
All the equations form an over-determined constrained I1l. EXPERIMENTAL RESULTS

sparse linear system. The optimal positions of the warpedin this section, we evaluate the performance of various
pixels can be obtained by minimizing the error of the abovgage resizing techniques and compare the results with the
equations, which is equivalent to nding the least-squargfoposed method. For validation, we have adopted tEghd

solution of the sparse linear system: geometric comparison tool [2] to evaluate the deviation Bf 3
meshes corresponding to the original and resized geometry
Ax b)) x=(ATA) *ATb: (4) images. The energy maps of different methods [1], [14] and

the proposed method are computed by Equation (1).
Similarly, the coordinate variableg; of pixels (i;j) can 0P puted by =4 @

also be obtained from the least-square solution of followinA. Evaluation of Various Image Resizing Methods

equations: We applied the proposed image resizing method to obtained

simplied 3D models of various resolutions, as shown in

i (Vi y” )= Eijs Fig. 5 and??. It is interesting to note that in [5] Gu et

E” 8" * Vi g OE” ’ 5) al. applied JPEG encoding toompressgeometry images,

i iy 14 which is essentially different from resizing geometry iraag

y|: H . Compression on geometry images does not alter the complex-
iiH = Htarget -

ity of the corresponding 3D models, but inevitably introdsic
There are two considerations for applying this warpindess in accuracy of the mesh vertices. In Fig. 5, the number of
based method to geometry image resizing. Firstly, we tak#angles of the original 3D meshe524289 were reduced to
a progressive strategy to gradually resize the geometry inoughly one half of the original siz&7825§ without causing
age to the target size instead of direct resizing. Progressany noticeable visual differences. As discussed in Sedtjon
resizing avoids a mass of pixels of low energy to be ovean appropriate method which best reconstructs the pixakgal
decimated. Besides, progressive resizing also allevitites is desirable when performing image resizing. We use three
self-intersectiorphenomenon produced by [14], which meansommonly used data interpolation methods (daycubic bi-
the warped pixels are not guaranteed to be positioned in fivear and nearest-neighbointerpolation) to generate multi-
same order horizontally and vertically as in the originahaga. resolution 3D models of BNNY and evaluate the deviations
Since geometry images implicitly encode the connectivity avith the original model by using MTRO. As shown in Fig. 6,
3D vertices, this phenomenon results in noticeable atsifacbi-cubic interpolation produces best results in terms agte
such as the kinks of triangular faces as shown in Fig. 4(k@crors measured on the models of lower resolutions. Camist
Secondly, we perform bi-cubic interpolation to reconstrucesults were obtained by resizing other 3D models and thus
appropriate pixel values after warping. In [14], the pixels/e adopt bi-cubic interpolation in the rest experiments nwhe
mapped to the same position are averaged to obtain theeded.
new pixel value. Empirically, we found this blending st@te  For comparison, we applied different image resizing meth-
causes the 3D model to shrink, which becomes serious in @gs, include regular down-sampling (RDS), seam carving
progressive resizing scheme. (SC) and the technique propose in [14] (VR), to generate
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Fig. 5. Multi-resolution models generated by geometry imageirg. (a)(c)
512 512, (b)(d)374 374

Bunny

=+ Bi-cubic
—©— Bi-linear
—w— Nearest

0.051

0.04r

0.03r-

Surtace
deviation (Metro)

0.02r

. . . .
150 200 250 0 350 400 450
Width (height) of geometry images

Fig. 6. Comparison of various interpolation methods.

multi-resolution models to evaluate their performance. Hi

demonstrates an example of aggressively resizing geometry

images of original siz&600 500to 105 105 As shown

in Fig. 7, although RDS can roughly preserve the globglol

structures of the original models, the important featuresew

not well preserved. Directly resizing an geometry image VR
: . 12]
produces undesirable results because the pixels of Iovvgyene[r

are over-decimated, which greatly alters the structurehef t

Oriainal 3D Model and Geometrv Imaae Our Results RDS VR sc

Fig. 7.  Surface simplication of two example models by resizitlge
corresponding geometry images to the target sizes08f 105.

becomes more and more irregular after a large number of
seams are removed. The proposed method outperforms other
methods in content-aware geometry image resizing.

IV. CONCLUSION

In this paper, we presented an improved content-aware
image resizing method suitable for geometry images. Gen-
erating multi-resolution 3D models by 2D representatiod an
processing techniques brings some bene ts because ggometr
images are more compact representations for 3D models, and
easier to render, transmit and store than traditional gy
meshes. In addition, most 2D image processing techniques
are easy to be accelerated by GPUs, which will be part of our
future work. It will also be interesting to explore the fdakiy
of applying the proposed method tmulti-chart geometry
images [12] which improves the uneven regular resampling
on surfaces.
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