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Abstract 

This paper presents an efficient method of mesh sim-
plification for geometric 3D models. The transmission of 
3D models on the Internet is an important task. The data 
size of a 3D model is usually large to enable more detail 
to be represented. Hence, it is necessary to represent the 
3D model while keeping the data size small and preserv-
ing its features, even if the meshes that constitute the 
model are unstructured. Although there are many meth-
ods for simplifying the meshes, most of them are time-
consuming. Our approach is to obtain an adequate sim-
plified model in a short amount of time. Therefore, the 
model provider can check the simplified result interac-
tively before uploading to the server. After transmitting 
the simplified model, if the user at the client needs to get 
more details, by transmitting some necessary information, 
the progressively increasing model detail and the original 
model without losses could be reconstructed. 

1. Introduction 

Obviously, there are more and more users that would 
like 3D graphics supports on the Web as the machine per-
formance and network bandwidth improve over time. For 
Web Graphics (a new platform based on the Web), geo-
metric 3D models are widely used. Therefore, how to 
transmit the mesh data, which constitutes the model, effi-
ciently through the Internet, has become an important task, 
since the data size is usually large. If a user wants to use a 
geometric 3D model on a Web page, retrieving the data 
set is time-consuming. Unfortunately, the user on the 
Internet usually does not need to use such a detailed 
model in most cases. Hence, to offer a simplified model 
which has easily recognizable shapes and features of the 
original model is necessary. Moreover, if the user then 
decides that more model details are needed, then the sub-
sequent download needs to be quick and with no retrans-
mission of information. 

Although there are many methods for simplifying 
geometric 3D models [7] [11] [20], most of them are gen-

erally time-consuming due to model optimization. These 
time-consuming methods are generally expected to be 
used directly if the model provider wishes to check the 
simplified model by changing some of the parameters 
interactively. Moreover, the simplified models created by 
some previous methods can not be easily recognized nor 
used to reconstruct the original model. We also presented 
a method for simplifying geometric 3D models and trans-
mitting them with a QoS-like (Quality of Service) control-
ling method as described in [3]. However, the data size of 
the simplified model is still too large or the simplified 
model is hardly recognizable if it contains only a few 
faces. 

The basic idea of our method is to segment the un-
structured meshes of a geometric 3D model into several 
parts first by using feature detection methods, and then 
simplifying each part of the meshes iteratively. Therefore, 
our approach can preserve the shape and features of the 
original model after simplification. Furthermore, since the 
methods used for detecting the features of the model are 
simple, the performance of our approach is also better 
than other previous methods. Hence, when a 3D model 
provider wishes to upload a geometric 3D model onto a 
Web server using our approach, the provider could first 
use our system to check what resolution of simplified 
model is to be used by the users, and could change some 
of the parameters to obtain interactively a better simplified 
model. On the client site, the user first receives the simpli-
fied model from the Web server. Then, if the user needs to 
use the model with more details, the server will then 
transmit the additional necessary information, which is 
capsulated as some patches, to the client so that the client 
program can show increasing model detail progressively. 
Finally, if the user really needs the original model, after 
receiving all of the patches, the system is then able to re-
construct the original 3D model with no losses and no 
retransmission of information. 

Moreover, to make our approach widely used in the 
Web world, we have developed all of the algorithms using 



exclusively the Java1 programming language for its hard-
ware-neutral features and wide availability on many 
hardware platforms. Additionally, the 3D graphics render-
ing is done by jGL, which is a 3D graphics library for 
Java with an OpenGL-like API (Application Program-
ming Interface) provided by Chen and Nishita [2]. 

2. Previous work 

Many researches have been carried out on simplifying 
the meshes of geometric 3D models. Some of them pro-
vide almost optimized meshes which can represent fine 
shapes and preserve the features of the original model 
with a small data size [4] [10]. Others simplify the meshes 
iteratively and store the removed information which can 
then be used to progressively reconstruct the lossless 
original model. Since our motivation is to transmit the 
geometric 3D model through the Internet, it is necessary 
to reconstruct the original model with a small amount of 
data transmission. Therefore, our approach belongs to the 
latter category. However, to allow it to be used for Web 
Graphics, where the run-time performance is more impor-
tant than providing an almost perfect model, a more effi-
cient method is needed. In this section, some related 
methods are introduced briefly. 

PM (Progressive Meshes) is a famous method for 3D 
mesh simplification and is based on the edge collapse or 
edge contraction operation provided by Hoppe [12] [13] 
and Hoppe et al. [15]. Although this method could result 
in an almost optimized simplified model, it is well known 
to be time-consuming. A derived method, QEM (Quadric 
Error Metrics), has been provided by Hoppe [14], Garland 
and Heckbert [8] [9] to make the calculation faster. The 
heuristic function used by QEM is geometry-based, since 
it calculates the geometric distance between the newly 
generated vertex and the faces which are deformed before 
generating it. Although QEM could enhance the run-time 
performance of the simplification process, the simplified 
model is sometimes hardly recognizable due to the over-
simplification. An image-based heuristic function is pre-
sented by Lindstrom and Turk [19]. It captures 20 images 
in every simplifying step and is obviously time-
consuming. Chen and Nishita also proposed a simple 
method for mesh simplification based on the edge col-
lapse operation [3]. However, without feature detection, 
the shape of the simplified model may hardly be recogniz-
able. 

Other algorithms are based on the vertex decimation 
operation, which are provided by Alliez et al. [1], Turk 
[22], and Schroeder et al. [21]. This algorithm is different 
from the previous ones; it could simplify a 3D model fast, 

but the shape of the simplified model maybe be changed 
and is hardly recognizable. 

                                                                 
1 http://java.sun.com/ 

Therefore, an efficient mesh simplification method 
with feature detection for making the simplified model 
remain recognizable is necessary. 

3. Feature edge detection 

In our algorithm, to simplify a geometric 3D model ef-
ficiently and at the same time preserve its features, it is 
necessary to find out the feature edges of the model so 
that the model may be simplified by removing the non-
feature edges while preserving its features. 

There are two kinds of feature edges in our approach. 
One is the sharp edge due to the sharpness of the geomet-
ric differences, and also the edges of adjacent faces con-
taining different material properties. The other is the base 
edge detected from the unstructured meshes if there is no 
sharp edge contained in the meshes. Before describing the 
two kinds of feature edges, the notation used in this paper 
is first introduced. 

3.1 Notation 

The notation used in this paper is shown in  as 
[3]. A geometric 3D model M  is represented as a formula 
containing 4 components: V  is the set of vertex v , i

[ ]mi ,1∈ , where  is the number of vertices, and defining 
the shape of the meshes in ℜ . 

m
3 F  is the vertex connec-

tivity of the meshes.  is the set of discrete attributes , 
like the material property, associated with the face , and 

 is the set of scalar attributes s , like the normal 

vector, associated with the wedge . 
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Figure 1. The representation of a 3D model. 
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3.2 Sharp edge definition 

If a geometric 3D model is constructed with several 
different material properties as shown in Figure 2 (b) or 
contains some pre-defined sharp edges as shown in 
 (a), the sharp edges of the model could be detected eas-

ily. An edge { }ji,e =  is called a boundary edge if there is 

Figure 
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only one face  with . An edge { kjif ,,= } fe⊂ { }ji,e =  
is called a sharp edge if either (1) it is a boundary edge, (2) 
its two adjacent faces  and  have different discrete 
attributes, i.e. d , or (3) its adjacent wedges have 

different scalar attributes, i.e. s  or 

. 
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(a)             (b) 
Figure 2. The examples of sharp edges. 

3.3 Base edge detection 

If there is no sharp edge or there are some features 
hidden in the meshes, the detection of base edges from the 
unstructured meshes is necessary. To detect the base 
edges, we use the ESOD (Extended Second Order Differ-
ence) operator as [16]. In this section, an operator called 
SOD (Second Order Difference) and the ESOD operator 
are described first. 

  e
viv

(a)             (b) 
Figure 3. The (a) SOD and (b) ESOD operators. 
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The SOD operator is the simplest method for detecting 
the features from unstructured meshes. It assigns a weight 
to every edge e  defined by the normal vectors of 
its adjacent faces as w . For example, in 

 (a), where  and  are the 
adjacent faces of the edge e , and the normal vector for 
face  is defined as: 

( ) =
{ ji ,,

. 

The ESOD operator extends the SOD operator. Instead 
of using the normal vectors of the adjacent faces of edge 

, e it uses the average normal vectors computed from the 
faces on the 1-ring of the vertices kv  and lv  as shown in 
Figure 3 (b). So the weight of edge { }jie ,=  is defined as 
( )

lk vv n , where the normal vector for vertex v  is ⋅=

defined as: 
( ) ( )∑∑

∈∈

⋅=
fvfv

fv fareafarea nn , 

where ( )farea  means the area of face . f
Therefore, to define a proper threshold [ ]1,1−=ε , it is 

possible to determine the features from
me

 unstructured 
or to segshes.  To use the SOD or ESOD operat ment 

the unstructured meshes is also a time-consuming task as 
[17]. Instead of using the SOD or ESOD operator to ex-
tract the features, we use the ESOD operator to find out 
the virtual feature edge. As shown by the dotted line in 
Figure 4, the edge { }jie ,=  is called the virtual edge of 

{ }l  if the edge does not exist, and there exists two 
faces { } Fk ⊂  and li ,, { } Flkj ⊂,, . Furthermore, a virtual 
edge i virtual feature edge if its weight calcu-
lated by the ESOD operator satisfies: 

s called a 

( ) ε<⋅=
lk vvew nn . 

In this case, the edge { }

edge k,

lk,  is called a base edge. No-
tice that, although we use the same name as in [3], the 
definition of the base edge is

4. Mesh simplification and reconstruction 

 is 
listed in Figure 5. The first step is to search for sharp 
edg

rp 
edges. The weight of the edge is assigned the weight of its 

 different since we did not 
consider the detection of features in [3]. 

 

Figure 4. Base edge detection. 
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The procedure for our mesh simplification method

es. Since the sharp edges are the edges with pre-
specified features, they are used to segment the meshes 
into several parts. Each part of the meshes is simplified 
independently, and the simplification for the geometric 
3D model with sharp edges is described in Section 4.1. 

Then, the normal vector of each vertex is calculated, 
along with the weight of each edge besides the sha( )iv



virtual edge using the ESOD operator, so that by using a 
threshold [ ]1,1−=ε , it is possible to detect the base edges 
of the meshes. As is shown in the example in Figure 4, if 
the edge { }ji, ted line) is a virtual feature edge, 
the faces above the dotted line and the faces opposite the 
line could not be merged during the simplification process. 
Therefore  endpoints of the base edges, edge 

 (the 

, the

dot

{ }lk,  in 
Figure 4 for instance, are specified as un-removable verti-
ces. Otherwise, the vertices and the edges used to connect 
them are removable. These removable edges are pushed 

riority queue with their weights being candidate 
edges. 

Find sharp edges 
Ca

into a p

lculate normal vector for each vertex 
 Calculate the weight of each edge 
 Detect base edges 
 Select candidate edge 
  Test selected edge 
  Remove removable edge 
Figure 5. The procedure of our method. 

oving the current remoAfter rem s, the 
weigh been 
changed due to the simplification process should be re-
cal

To simplify a geometric 3D model with pre-defined 
model is gener-

ated, while preserving its features, we first search for the 
pre

tex which belongs to two sharp edges, the two 
sha

After pushing all of the removable edges into a prior-
eue are candi-

dates for removal. Before removing the edges, it is neces-
sar

ring of the endpoints of the edge are deformed. This ac-

or two of its adjacent faces 
are removed. This action may cause the vertex connection 

 is neces-
sary to test which vertex could be removed if we used the 

ge collapse operation will be operated as de-
scribed in the following section. 

The half edge collapse operation, as shown in Figure 6, 
is a special case of the edge collapse operation. If a vertex 

vable edge
ts of the edges which the connectivities have 

culated, and also need to be checked to see if they be-
come base edges or not. Then, attempts are made again to 
remove the removable edges, as described above, until 
there are no removable edges. 

4.1  Simplification with sharp edge 

sharp edges, which are specified when the 

-defined sharp edges due to sharp geometric differ-
ences and also for the edges which are adjacent to faces 
which contain different material properties. Then, the 
endpoints of the sharp edges are marked as un-removable 
vertices. Therefore, the 3D model is segmented into sev-
eral parts due to the sharp edges. To simplify each part 
independently does not make the pre-defined features 
disappear. 

If a vertex belongs to two sharp edges, the vertex is set 
to be removable with one of the two sharp edges. To re-
move a ver

rp edges are made into one. Furthermore, to preserve 
the pre-defined features of the 3D model, when removing 
the vertex between two sharp edges, we still calculate the 
weight of these two sharp edges, as described in the pre-
vious section. Therefore, only the sharp edges which are 
not significant are removed. 

4.2 Selected removable edge testing 

ity queue, all of the edges in the priority qu

y to do some tests to check if the removing process 
passes the following tests. 

4.2.1 Preserving mesh inversion. To remove an edge 
from meshes implies that the neighboring faces on the 1-

tion may cause the faces to fold over on each other. To 
avoid this type of mesh inversion, it is necessary to test 
the edge before removing it. When we get one removable 
edge from the priority queue, we compare the normal vec-
tor of each of the neighboring faces before and after re-
moving. If the normal vector flips, this edge removing is 
not performed. 

4.2.2 Preserving topology. To remove an edge from the 
meshes also implies that one 

of the neighboring faces of the removing edge to change. 
Since our algorithm is working for 2-manifolds with 
boundary, it is necessary to test if this edge removing 
changed the topology of the meshes or not. When we get 
one removable edge, we check the neighborhood relation-
ship of the neighboring faces of the removing faces before 
and after the edge removing. If it causes the topology to 
change, then this edge removing is not allowed. 

4.2.3 Preserving model shape. Once the edge obtained 
from the priority queue passes the above tests, it

half edge collapse operation to remove the edge, as will 
be described in Section 4.3. Hence, it is necessary to test 
which endpoint is the better one to remove when remov-
ing one edge. If one of the endpoints is un-removable, i.e. 
it is also the endpoint of a sharp edge or a base edge, we 
remove the other one. If both of the endpoints of the edge 
are removable, we compare the deviation of the neighbor-
ing faces� normal vectors which are on the 1-ring of the 
endpoints, and then we remove the vertex which is located 
on the faces that are flatter than the ones located by the 
other one. 

If the removable edge has passed all of the tests, then 
the half ed

4.3 Half edge collapse 



removed with a particular re-triangulation of the remain-
ing hole when using the vertex decimation operation, the 
res

significantly affects the net-
wo

significantly affects the net-
wo

ulting mesh is also the same as the one after d  
half edge collapse operation. 

The information used for reconstructing the original 
model is stored as a patch. To minimize the data size of 
the patch which will be sent to the client side to recon-
struct the original model and 

 after d  
half edge collapse operation. 

The information used for reconstructing the original 
model is stored as a patch. To minimize the data size of 
the patch which will be sent to the client side to recon-
struct the original model and 

oing theoing the

 struct { 
  short vlr_rot:6; // encoding to find another vertex 

rk transmission, we use the half edge collapse opera-
tion instead of using the edge collapse operation. Using 
the half edge collapse operation reduces the size of the 
patch compared to the edge collapse operation. This is 
because, when using the half edge collapse operation, 
there is only one vertex removed. No vertex is added into 
the meshes but the edge collapse operation removes two 
vertices and adds one vertex. 

rk transmission, we use the half edge collapse opera-
tion instead of using the edge collapse operation. Using 
the half edge collapse operation reduces the size of the 
patch compared to the edge collapse operation. This is 
because, when using the half edge collapse operation, 
there is only one vertex removed. No vertex is added into 
the meshes but the edge collapse operation removes two 
vertices and adds one vertex. 

half edge 
collaps

 

Figure 6. Half edge collapse and vertex split. 

struct patch { 

 

Figure 6. Half edge collapse and vertex split. 

struct patch { 
 int flclw; ghborhood of the patc

vertex split 

// a face in nei h 

  short vs_index:2; // index (0..2) within the patch 
 } code; 
 VertexAttribD vad_l; 
 WedgeAttribD wad_l; 
}; 

Figure 7. Patch data structure. 

Compared with the vertex split (Vsplit) data structure 
described in [13], since we detect the sharp edges before 
doing the e of our 
patch data structure listed in Figure 7 is only half of the 
siz

The simplified mesh and the patches which have been 
 simplification process are 

uploaded onto the Web server and provided for the users 
to 

Figures 10 (b) ~ (d) show the simplified models, 
nerated with different thresholds 

mesh simplification process, the siz

e of the Vsplit data structure, even when we use the 
edge collapse operation. This is because by using the half 
edge collapse operation, we still could get as good a sim-
plified model as the one generated using the edge collapse 
operation. Therefore, in our algorithm, we still use the 
half edge collapse operation to minimize the size of the 
patch, although the difference in the patch size is only a 
few as a result of using the two operations. Since the size 
of the patch used in our method is smaller than other simi-
lar data structure used in other ones, the data size trans-
mitted over the Internet is therefore also smaller. 

4.4 Mesh reconstruction 

stored when doing the mesh

use at the client site. It is named the streaming mesh. 
When using the streaming mesh on the Internet, the sim-
plified mesh is sent first. After sending the simplified 
mesh, some patches are sent progressively with QoS-like 
controlling as described in [3], so that the original 3D 
model may be reconstructed without loss of data using the 
vertex split operation, as shown in Figure 6. 

5. Result 

which are ge ε , of the 
bunny model shown in Figure 10 (a). Figure 10 (e) shows 
the

 

(bytes) (bytes) 
tch

(bytes) 
time 
(ms) 

 simplified model when we ignore the base edge detec-
tion, since there are some boundary edges at the bottom of 
the model, which will be detected as sharp edges. The 
shape of this part remains recognizable. Without detecting 
the base edges of the 3D model, the model may be over-
simplified. As a result, the shape of the simplified model 
could not be recognized. This is a common problem of 
other previous methods. Figure 11 shows comparisons of 
the original models and simplified results of other geo-
metric 3D models. Even for the simplified models, the 
shape and features could still be recognized easily. Since 
there are several sharp edges contained in the models 
shown in Figures 11 (c) and (d), we ignore the base edge 
detection during the simplification process. The number 
of faces of each model and the thresholds used for simpli-
fication are also shown in Figures 10 and 11. 

Table 1. Comparison of file sizes & performances.
model original model simplified m el o pa

e 

od

d m

PC with 

ne 

bunny 75,142 5,746 34.424 1,141

ny mod

he testi

dragon 65,586 18,137 35.939 961
hand 53,519 91 3,9 35.684 951

cessna 5 1453,685 8,320 30.379 6,219
fandisk 2 1595,092 35,765 29.083 ,102

tiger 3 1547,587 9,099 34.925 ,852

Table 1 l ile sizes rigi d
implified ones of differe et  

shown in Figures 10 and 11, respectively. The simplified 
bun

ists the f of the o nal mo els and 
the s nt geom ric 3D models 

el used in Table 1 is the model shown in 
Figure 10 (d). The run-time performances required to gen-
erate the simplifie odels and the average patch size are 
also shown in Table 1. T ng platform is a notebook 

an Intel Mobile Pentium III 850MHz CPU and 
256MB memory, the Java environment is Sun Java2 SDK, 



SDK, Standard Edition v1.4.1_01. Since we wish to gen-
erate a simplified model with shapes and features that are 
easily recognized, the compression rate of the model with 
several pre-defined features is worse than for other mod-
els, for example the model shown in Figure 11 (c). 

For comparison, we have converted the file format of 
the original model to be the same as the simplified mesh 
(a gzipped ASCII file). The number of patches for recon-
structing the original model from the simplified one is the 
difference of the vertex number of the original model and 
the simplified one. All of the patches are also stored as a 
gzipped ASCII file. Furthermore, since we use only pure 
Java programming language to develop all of the algo-
rithms, it is possible to use our testing program via our 
Web site2. Moreover, the 3D graphics engine - jGL3 is 
used which is also developed with pure Java. 

The model shown in Figure 11 (e) is generated from 
the model shown in Figure 12 (a) by applying the 

he original model from the simplified one is the 
difference of the vertex number of the original model and 
the simplified one. All of the patches are also stored as a 
gzipped ASCII file. Furthermore, since we use only pure 
Java programming language to develop all of the algo-
rithms, it is possible to use our testing program via our 
Web site2. Moreover, the 3D graphics engine - jGL3 is 
used which is also developed with pure Java. 

The model shown in Figure 11 (e) is generated from 
the model shown in Figure 12 (a) by applying the 3 -
subdivision algorithm pr y Kobbelt [17] three 

es. The model shown in Figure 12 (c) is the model 
generated by applyin me subdivision algorithm 
only once. If the models reconstructed from the simplified 
model shown in Figure 11 (j) have the same number of 
faces as the models shown in Figures 12 (a) and (c), the 
results shown in Figures 12 (b) and (d) are similar. These 
comparisons show that our algorithm could result in a 
well-reconstructed model even there re only a few 
patches applied to the sim ified model. 
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Figure 8. Similarity of geometric approximation. 

r comparin econstruc

number of faces 161 2915 
p

Fo g the models r ted from the sim-
p
model shown in Figure 10 (d), which is generated by our 
me

lified model with the original one, we use the simplified 

ompare 

thod with 2.0−=ε , and its original model is shown in 
Figure 10 (a). The results are as the curves (a) shown in 
Figures 8 and 9. In order to compare with other previous 
methods, we d the QEM method to simplify the 

del shown in Figure 10 (a), and made the same 

comparisons as those of our approach. The results are as 
the curves (b) shown in Figures 8 and 9. 

Figure 8 shows the similarity of the geometrical 
approximation of each reconstructed model and the 
original one. To emphasize the differe

also use

                                                                

bunny mo

 

nce of the two 
models in each comparison, the measurement used in 
Figure 8 is based on the 2L  norm: the average squared 
distance from the vertices of the original model to the 
surface of the reconstructed one used to c the 
difference between the two models. Figure 9 shows the 
comparisons for similarity in appearance of each of the 
reconstructed models and the original models. To 
compare the sim in appearance, we compute the 
differences between the rendered images of the original 
model and the reconstructed ones by setting the camera at 
6 different positions as in [19]. 

poor
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at contains less faces (number of faces is

(a)
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Figure 9. Similarity of appearance. 
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 reconstructed from the simplified one are almost the 
same. However, to generate the simplified model using 
the QEM method is much more time-consuming than us-
ing our method. For example, simplifying the bunny 
model shown in Figure 10 (a) took more than 4.5 seconds, 
but took less than 1.2 seconds using our approach, as 
shown in Table 1. Moreover, the data size of the patch 
used for reconstructing the original model in our method 
is much smaller than other previous methods. 

6. Conclusions 

fication method for unstructu

te an almost optimized simplified model, to make the 
shape and features of the simplified model still recogniz-
able is the main purpose of our method. However, a sim-
plified model generated by some previous methods some-
times becomes only a polyhedron. This is useless in prac-2 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jMS/ 

3 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jGL/ 



tice. Since our method could provide the simplified model 
of fewer than 20KB on average, this kind of small size 
could be transmitted efficiently through the Internet. 

Moreover, the size of the patch used for reconstructing 
the original model is less than that used in other previous 
methods. For example, when using the data structu

[7] M. Garland. �Multiresolution Modeling: Survey & Future 
Opportunities�, Eurographics 99 State of the Art Report, 
1999. 

[8] M. Garland and P. S. Heckbert, �Surface Simplification 
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the 

th the appropriate data size so 
tha
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Figure 10: Comparisons of (a) original bunny model, (b) ~ (d) simplified models 
with different thresholds, and (e) simplified model without base edge detection. 
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Figure 11. Comparisons of (a) ~ (e) original models, and (f) ~ (j) simplified results. 
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Figure 12. Comparisons of (a) original model, (c) subdivided model from (a), 
and (b) (d) reconstructed models from Figure 11 (j). 


