
 1

CP-X3D:
A CROSS-PLATFORM 3DVR E-COMMERCE ENVIRONMENT

Tzu-Min Chang Bing-Yu Chen

Dept. of Computer Science and
Information Engineering,

Dept. of Information Management,
Graduate Inst. of Networking and Multimedia,

National Taiwan University
No. 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan

minming@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw

ABSTRACT
X3D (Extensible 3D) is a standard description language for describing 3D scenes

on the web environment and can be used to establish 3DVR e-commerce systems, such
as virtual shopping malls. However, due to the CPU and memory limitations of mobile
devices, the 3DVR e-commerce systems described by using X3D scene language cannot
be used on mobile devices. This limitation delays the growth of 3DVR e-commerce
systems, since the population and influence of mobile devices are more powerful than
PC environments. To make X3D to be really cross platform, we provide a
cross-platform X3D (CP-X3D) environment in this paper, which including a modified
X3D scene language suitable for mobile devices and a cross-platform CP-X3D engine
for both of mobile devices and PC environments. Through the CP-X3D environment,
the 3DVR e-commerce systems described in CP-X3D scene language or developed with
CP-X3D engine can be used on both of PCs and mobile devices.

Keywords: X3D, mobile device, cross-platform, 3DVR e-commerce environment

INTRODUCTION
Thanks to the progress of mobile devices, powerful mobile devices become more and
more wide-spreading. People can use their powerful mobile devices to obtain the
information they need or just for entertainments no matter where they are. Mobile
devices will play more important roles in the near future. Not only using mobile devices
to get information but also using mobile devices to play a game for entertainments will
become common behaviors. However, existing applications on mobile devices are
almost 2D graphics because rendering 3D graphics on mobile devices is still considered
a difficult task, although 3D graphics can provide fancier interface and show more
information than 2D graphics. Mobile devices are indeed characterized by some serious
limitations with respect to PCs such as limited CPU and memory, lack or limited

 2

performance of graphics accelerators, and lack of powerful development and debugging
environments. Nevertheless, the capabilities of mobile devices are now on the increase,
and this makes the research of 3D graphics on mobile devices come earlier. Hence,
besides to use the 3D capability of mobile devices for entertainments, it is also possible
to provide a 3DVR (3D Virtual Reality) e-commerce (electronic commerce)
environment on mobile devices.

On the other hand, X3D (Extensible 3D) [2006] applications are in a broad range of
application areas such as engineering, scientific, and information visualization,
multimedia presentations, entertainments, web pages, shared virtual worlds, and 3DVR
e-commerce systems. Furthermore, X3D applications probably can express more
information than general 2D applications. Although there are so many types of browsers
on computers, the utility of X3D is restricted by the demand people must have one
computer beside them if they want to use any applications with X3D. That is because
X3D applications are almost for PCs. In other words, X3D files can not be played
anywhere and anytime because these X3D browsers of nowadays are made almost for
PCs. However, there are many situations that people need to use X3D applications but
they do not have any PC at that moment. As electronic maps based on X3D, people
more often need these applications when they are in the way to a strange place than at
home or office. Here is another example. Try to imagine a situation, somebody has a
powerful mobile device and he or she wants to spend some money on a virtual shopping
mall. This person is interested in two malls whose content are the same, and their prices
are also identical. However, among these two virtual shopping malls, one is only for
PCs, but the other can be played on both of PCs and mobile devices. If this person
chooses the later virtual shopping mall, he or she can enjoy this virtual shopping mall
even though he or she is waiting for a bus. In the same way, if X3D files or applications
can be played both on PCs and mobile devices, they will get higher value than before.

To make mobile devices be able to play X3D files and applications not only raises the
visibility of X3D but also make these applications be able to use in more appropriate
situations. Hence, we provide a cross-platform X3D (CP-X3D) environment in this
paper, which including a modified X3D scene language suitable for both of mobile
devices and PCs and a cross-platform CP-X3D engine also for both of mobile devices
and PC environments.

In the rest of this paper, we first introduce X3D briefly. Then, the CP-X3D engine and
CP-X3D scene language are described. Finally, some results, conclusion, and future
work are discussed in the final sections.

 3

EXTENSIBLE 3D

Extensible 3D (X3D) is an open standard file format for 3D content delivery and
run-time architecture which can represent and communicate 3D scenes and objects. It is
an ISO (International Organization for Standardization) ratified standard that provides
the storage, retrieval and playback of real time graphics content embedded in
applications, within an open architecture to support a wide array of domains and user
scenarios. X3D is not a programming API (Application Program Interface) and is not
just a file format for geometry interchange either. X3D is intended for use on a variety
of hardware devices and in a broad range of application areas. X3D allows components
to be added to extend functionality for vertical market applications and services.
Furthermore, X3D is the successor to the Virtual Reality Modeling Language (VRML)
[2003] which is the original ISO standard for web-based 3D graphics.

The architecture of X3D provides increased functionality for immersive environments
and enhanced interactivity. Moreover, the architecture of X3D also provides focused
data interchange formats for vertical market applications within a small downloadable
footprint. A component-based architecture supports creation of different "profiles", and
components can be individually extended or modified through adding new "levels".
However, the original X3D is designed for PC environments, since it depends on
powerful graphics hardware which is only provided for PCs or above hardware. To
provide CP-X3D, a subset of X3D should be defined suitable for both of PCs and
mobile devices.

ARCHITECTURE OF CP-X3D ENGINE
Before describing the CP-X3D scene language, we have to first give an overview of the
CP-X3D engine. The CP-X3D engine can be divided into two parts. One is the original
X3D engine running on PC environments which can read the show the full version of
the X3D nodes. The other is the X3D engine running on mobile devices, which is called
X3D ES engine. The architecture of the X3D ES engine is similar with that of X3D
engine, so the two engines can be treated as only one CP-X3D engine.

Figure 1 shows the architecture of the CP-X3D engine. The left side is the original X3D
engine. For the original X3D architecture, when an X3D browser received X3D files or
streams, the X3D files or streams will be parsed and displayed by the X3D engine. For
the CP-X3D architecture, the behavior is similar, but the X3D browser will be a
common CP-X3D browser, which can be used on PC and mobile devices. When the
CP-X3D browser works on PCs, it will use the X3D engine. When it works on mobile

devices, it will use the X3D ES engine. If the CP-X3D browser received some nodes
which are not defined in the CP-X3D scene language, the nodes will be ignored when
the X3D file or stream are shown on mobile device, but they will be shown on the PC
version.

 CP-X3D files, streams

X3D Engine

GLUT

Window System

PC-based Hardware

OpenGL

CP-X3D Browser

X3D ES Engine

OpenGL ESEGL

Mobile Hardware

System OS

Figure 1. The architecture of CP-X3D engine.

The X3D ES architecture is similar with the original X3D architecture. The X3D engine
is built by using GLUT and OpenGL and the X3D ES engine is built by EGL and
OpenGL ES. OpenGL ES [2006] is a low-level and lightweight API for advanced
embedded graphics using well-defined subset profiles of OpenGL. It provides a
low-level API between software applications and hardware or software graphics engines.
As for the reason to choose OpenGL and OpenGL ES as the rendering engines of the
X3D and X3D ES engines, that is because OpenGL and OpenGL ES has the property of
cross platform. Moreover, OpenGL and OpenGL ES are industry standards and royalty
free. Moreover, OpenGL and OpenGL ES are easy to use because they are well
structured with an intuitive design and logical commands.

Figure 2 shows the flow diagram of the X3D ES engine which is the same as that of the
X3D engine. The X3D and X3D ES engines can be separated into three major modules,
Parser, Renderer, and Event Handler whose functionality is as follows.

 4

 Parser: this module parses the X3D files or streams. It supports full version of the
X3D nodes and can then parse the X3D core concepts. Its input is X3D files or

streams and its output is a set of X3D nodes in a tree structure which defines the 3D
scene. It includes x3dio, x3dxml, and x3ddataset for parsing different data-type of
input data streams.

When users want to play X3D files, x3dio starts to receive the X3D files one by one.
Moreover, x3dio is an interface in order to handle any type of input and output, and
it has an implementation called filestream to work with the files while x3dxml has
an implementation called xmlreader used to read a stream which has processed by
x3dio and convert the stream to a tree of the X3D nodes. Furthermore, x3dxml has a
subordinate called x3ddataset which handles the nodes defined in the X3D
specification and helps x3dxml to generate a tree of X3D nodes according to the
X3D specification. After the parsing process, a set of X3D nodes in a tree structure
has been generated. These X3D nodes are sent to the second module, Renderer.
Since the CP-X3D scene language is actually a subset of the original X3D scene
language, the Parser of X3D ES engine is the same as the Parser of X3D engine.

Event Handler

Renderer

Parser

X3D ES Engine

x3dio x3dxml

x3ddataset

X3D files stream

Event handler

errorcallbackevents
error message

error

scene

a tree of X3D nodes

changes

x3drender

OpenGL ES

Figure 2. The flow diagram of X3D ES engine.

 5

 Renderer: this module deals with all the process about rendering. The input is a tree
of the X3D nodes generated by the Parser of the CP-X3D Engine. After the
rendering processing, the Renderer outputs the 3D scene defined by the X3D nodes.
Moreover, the Renderer also receives a set of changes in the attributes of X3D
nodes such as the movement of the viewport and models. The main sub-module of
the Render is called x3drender, which parse the X3D scene tree and call the

 6

OpenGL or OpenGL ES engine to render the 3D scene. Since the rendering
performance is not the same for mobile devices and PCs, although the X3D ES and
X3D engines have the same Parser, their Renders are different.

 Event Handler: this module manages all kinds of events. The input of Event

Handler is a set of events and the output is a set of changes in the attributes of X3D
nodes that define the scene. The events include the interaction of users such as to
move the viewport, to make some objects to rotate, etc. When some exceptions
happen such as out of memory, x3dio which has an implementation called
filestream to work with files, will send an error notification to the Event Handler.
The Errorcallback, a sub-module of Event Handler, will gather all of the
exceptions and generate a message to notify the users. The Event Handler in the
X3D ES engine is also the same as that in the X3D engine.

CP-X3D SCENE LANGUAGE

According to the X3D specification [2006], each X3D component may designate a level
of service by using a numbering scheme in which higher-numbered levels denote
increasing qualities of service (QoS). In other words, X3D specification may be
supported at varying levels or QoS. Table 1 lists the level supported by the Parser and
Renderer of X3D and X3D ES engines. The first column is the components of X3D
specification in alphabetical order. Gray background is to give clear indication of full
support. For the module has a level of support set to zero means the specific feature may
not need to be supported by that module. For example, the Renderer never interpolates
anything, and does not need to support Networking, KeyDeviceSensor,
PointingDeviceSensor, Time, and Sound components according to the X3D
specification.

Obviously, the Parser of the X3D ES engine fully supports all of the X3D components.
With this Parser for mobile devices, the system can provide the ability to parse every
component and node defined in the X3D specification. Hence, even the user uses the
X3D ES engine to read an X3D file; the X3D file can also be pared normally, although
some nodes may not be shown in the screen. As for the Renderer, there are ten
components full support in the X3D ES engine, which are Core, Geometry2D,
Geometry3D, Geospatial, Grouping, Lighting, NURBS, Rendering, Shape, and
Texturing. Hence, the Renderer can organize X3D nodes into groups to establish a
transformation hierarchy for the X3D scene graph. The Renderer also handles
fundamental rendering primitives such as TriangleSets and PointSets, and geometric

 7

properties nodes that define the coordinate indices, colors, normals and texture
coordinates. The CP-X3D nodes are listed in エラー! 参照元が見つかりません。.

X3D ES Engine X3D Engine
 Maximum

Parser Renderer Parser Renderer
Core 2 2 2 2 2
DIS 1 1 0 1 0
EnvironmentalEffects 3 3 3 3 3
EnvironmentalSensor 2 2 0 2 0
EventUtilities 1 1 0 1 0
Geometry2D 2 2 2 2 2
Geometry3D 4 4 4 4 4
Geospatial 1 1 0 1 0
Grouping 3 3 3 3 3
H-Anim 1 1 0 1 0
Interpolation 3 3 0 3 0
KeyDeviceSensor 2 2 0 2 0
Lighting 3 3 3 3 3
Navigation 2 2 0 2 2
Networking 3 3 0 3 0
NURBS 4 4 4 4 4
PointingDeviceSensor 1 1 0 1 0
Rendering 4 4 3 4 3
Scripting 1 1 0 1 0
Shape 3 3 3 3 3
Sound 1 1 0 1 0
Text 1 1 0 1 1
Texturing 3 3 1 3 1
Time 2 2 0 2 0

Table 1. The comparisons of support levels between X3D and X3D ES engines

On the other hand, the X3D engine for the PC environment can play the X3D files
which have more complex scenes because the X3D engine is based on OpenGL 2.1
[Segal & Akeley 2006] and designed for running on the PC environments. Some
limitations of X3D ES engine are caused by hardware and OpenGL ES 1.1 [2006] while
some limitations are due to these components may be redundant and decrease the
performance of X3D ES engine. For example, the X3D ES engine does not fully

support Navigation and Text components. That is because these two components are
frustrating on mobile devices. Besides, the X3D ES engine does not support H-Anim
and DIS components. That is because these two components require too large
computation power which is hard to be realized on mobile devices. Hence, the nodes
supported by the X3D ES engine can be treated as CP-X3D nodes, since the nodes can
be supported both on mobile devices and PC environments. For those X3D nodes which
are not CP-X3D nodes, although the X3D ES engine can also parse the nodes, but it can
not render them.

RESULT
Figure 3 shows a simple result of the X3D ES engine which shows several spheres with
their wireframe, flat shading, and smooth shading. Figure 4 shows the comparisons of
X3D and X3D ES engines which use the same X3D file as shown in Figure 3. Since this
X3D file is written by only using the CP-X3D nodes, the results on PCs and mobile
devices are the same. Figure 5 shows four complicated results, which show an ocean
scene, a grasslands scene, an ocean scene at sunrise, and a simple city map. The users
can move the viewport in these static scenes.

Figure 3. The results of three classic shading and lighting algorithms on a Pocket PC
2003 emulator.

 8

Besides, the X3D ES engine is able to show some special effects such as fog. In X3D
specification, the Fog node provides a way to simulate atmospheric effects by blending
objects with the color specified by the color field based on the distances of the various
objects from the viewer. Figure 6 shows a scene with the fog effects in different
viewports. In Figure 7, there is a scene with several simple buildings. This scene has
around 5000 triangles. The performance of this complicated result is 5fps (frames per
second) on a real mobile device with a 520MHz processor and 64MB main memory.
Of-course, the performance on a desktop or laptop PC is real-time.

 9

Component Node Component node

Core MetadataDouble
MetadataFloat
MetadataInteger
MetadataSet
MetadataString

Lighting DirectionalLight
PointLight
SpotLight

EnvironmentalEff
ects

Background
Fog
TectureBackground

Navigation Billboard
Collision
ViewPoint

Geometry2D Arc2D
ArcClose2D
Circle2D
Disk2D
Polyline2D
Polypoint2D
Rectangle2D
TriangleSet2D

Geometry3D Box
Cone
Cylinder
ElevationGrid
Extrusion
IndexedFaceSet
Sphere

Networking Anchor
Inline
LoadSensor

Rendering Coordinate
IndexedLineSet
LineSet
PointSet
Normal

Grouping Group
StaticGroup
Switch
Transform
WorldInfo

Shape Appearance
FillProperties
LineProperties
Material
Shape

KeyDeviceSensor KeySensor Texturing ImageTexture
TextureCoordinate

Table 2. CP-X3D nodes

Figure 8 shows the comparison between the results of X3D and X3D ES engines. The
tree structure which defines the 3D scene of this X3D file has already used a lot of
memory. Because of limited memory, the X3D ES engine can not play the X3D files
which are as complex as the result of the X3D engine. However, the user using the

mobile device can still use the X3D file and see the partial result. Although the result is
partial, the information may be enough to fulfill the user’s needs.

Figure 4. The comparisons between the X3D (lower) and X3D ES (upper) engines.

Figure 5. X3D scenes played with X3D ES engine on a Pocket PC 2003 emulator.

CONCLUSION AND FUTURE WORK

Because of the CP-X3D engine, it is feasible explicitly to develop cross platform X3D
applications on both of mobile devices and PCs. The CP-X3D engine proves X3D is
able to be implemented on both of mobile devices and PCs without any replacement
though some X3D components may be redundant for some X3D applications. Moreover,
the CP-X3D engine brings great contribution not only to X3D development but also to
the applications on mobile devices. The X3D ES engine provides a full support parser
which can parse X3D files and easy to make a browser be able to play X3D files, and it
 10

also provides a partial support renderer for basic rendering. In other words, the X3D ES
engine makes other applications on mobile devices support X3D easily. Thus, the X3D
ES engine or the CP-X3D engine makes the cross platform 3D games and virtual
shopping malls much simpler to develop than before.

Figure 6. The results of X3D scene with fog in different viewports on a Pocket PC 2003
emulator.

Figure 7. A simple 3D city map played on a Pocket PC 2003 emulator.

Although the X3D ES engine has made X3D applications on mobile devices easy to
develop, the X3D ES engine still has its own limitation caused by mobile devices and
OpenGL ES 1.1. For example, the X3D ES engine can not play several complex models
at the same time because of the limited memory and CPU of mobile devices. This
limitation makes the 3D scenes have to be as simple as possible. In fact, some
limitations of the X3D ES engine are caused by the limitations of the hardware.
Although the performance of the X3D ES engine is really restricted by these hardware
limitations, the X3D ES engine can also get improvement with the progress on the
mobile devices.
 11

Figure 8. The comparison between the results of the X3D (right) and X3D ES (left)
engines.

ACKNOWLEDGMENT

This work is partially supported by the National Science Council of Taiwan under the
numbers: NSC93-2622-E-002-033 and NSC94-2622-E-002-024. The authors would
like to thank Nein-Hsien Lin for his great support on X3D engine implementation.

REFERENCE
Extensible 3D (X3D) -- Part 1: Architecture and base components, ISO/IEC

19775-1:2004. 2006. Web3D Consortium, Inc.
Lin, N.-H., Huang, T.-H., & Chen, B.-Y. 2007. 3D model streaming based on a jpeg

2000 image, In Proceedings of IEEE 2007 International Conference on
Consumer Electronics.

OpenGL® ES Common/Common-Lite Profile Specification Version 1.1.07. 2006. The
Khronos Group Inc.

Pouderoux, J., & Marvie, J.-E. 2005. GLUT|ES - The OpenGL|ES Utility Toolkit
http://glutes.sourceforge.net/.

Segal, M., & Akeley, K. 2003. The OpenGL® Graphics System: A Specification
(Version 1.5). Silicon Graphics, Inc.

Segal, M., & Akeley, K. 2006. The OpenGL® Graphics System: A Specification
(Version 2.1). Silicon Graphics, Inc.

The Virtual Reality Modeling Language -- Part 1: Functional specification and UTF-8
encoding, ISO/IEC 14772-1:1997. 2003. Web3D Consortium, Inc.

Will, H.-M. 2004. Vincent Mobile 3D Rendering Library.
http://sourceforge.net/projects/ogl-es/.

 12

	ABSTRACT
	INTRODUCTION
	EXTENSIBLE 3D
	ARCHITECTURE OF CP-X3D ENGINE
	CP-X3D SCENE LANGUAGE
	RESULT
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCE

