Inter-Surface Mapping

John Schreiner
Arul Asirvatham
Emil Praun

Hugues Hoppe
Microsoft Research

University of Utah
Introduction

No intermediate domain
- Reduced distortion
- Natural alignment of features
How Is Our Method Different?

• Directly create inter-surface map
 – Symmetric coarse-to-fine optimization
 – Symmetric stretch metric
→ Automatic geometric feature alignment

• Robust
 – Very little user input
 – Arbitrary genus
 – Hard constraints
Algorithm Overview

1. Consistent mesh partitioning
2. Constrained Simplification
3. Trivial map between base meshes
4. Coarse-to-fine optimization
Consistent Mesh Partitioning

- Compute matching shortest paths
- Add paths not violating legality conditions
Partition

- Assign feature points on both 2 meshes.
- Find the shortest path between each pair of feature vertices. (Dijkstra search)
 - The search is constrained to not intersect with paths already in the network.
 - Solution: perform Dijkstra on both the mesh vertices and the edge midpoints.
- Select the best pair of corresponding path and split the mesh.
 - Sort by the sum of path lengths on 2 meshes.
Legality Conditions

- Paths don’t intersect
- Consistent neighbor ordering
- Cycles don’t enclose unconnected vertices
Automatic Insertion Of Feature Points

Add features if not enough to resolve genus
Coarse-to-Fine Algorithm

- Interleaved refinement
- Vertex optimization
Vertex Optimization

- Consider v of M^2 and optimizes v of M^1

- The optimization only modifies the map inside these corresponding neighborhoods
 - Regenerate barycentric coordinates
2D Layout
Line Searches
Stretch Metric

Automatically encourages feature correspondence

Conformal Stretch
Results: Inter-Surface Mapping
Results: Inter-Surface Mapping

Low distortion around hard constraints
Results: Inter-Surface Mapping

Arbitrary genus (genus 2; 8 user feature points)
Robustness
Conclusion

- Directly create inter-surface map
 - Symmetric coarse-to-fine optimization
 - Symmetric stretch metric

→ Automatic geometric feature alignment

- Robust: guaranteed bijection
 - Arbitrary genus
 - Hard constraints

- General tool with many applications
Future Work

• Faster technique
 – Currently: 64K faces, 2.4GHz → 2 hours
• More than 2 models
• Surfaces with different topologies
~ The End~