Computer
Organization and Structure

Bing - Yu Chen
National Talwan University

The Processor

T > D D D D D e

Logic Design Conventions

Building a Datapath

A Simple Implementation Scheme
An Overview of Pipelining

Pipelined Datapath and Control
Data Hazards: Forwarding vs. Stalls
Control Hazards

Exceptions

Instruction Execution

A PC - instruction memory, fetch instruction

A Register numbers - register file, read
registers
A Depending on instruction class
A Use ALU to calculate
A Arithmetic result
A Memory address for load/store
A Branch target address
A Access data memory for load/store
A PC « target address or PC + 4

Abstract / Simplified View

L data

PC

: : register #
=—pladdress instruction registers
register #
instruction
memory register #

>ALU —@=-»|address

data

T’

memory

pldata

A Two types of functional units:

A elements that operate on data values (combinational)
A elements that contain state (sequential)

Abstract / Simplified View

PC

—pladdress instruction

instruction
memory

L

data

register #
registers
register #

register #

NP

ALU [=—@=pladdress

data
memory

pldata

A Cannot just join wires together
A Use multiplexers

Recall.
Logic Design Basics

A Information encoded in binary
A Low voltage = 0, High voltage = 1

N

A One wire per bit

A

A Multi -bit data encoded on multi -wire buses
A Combinational element

o

A Operate on data

N

A Output is a function of input

A State (sequential) elements
A Store information

Recall:
Combinational Elements

A AND-gate A Adder
A Y=A&B A Y=A+B
A —
;D e
5 —
A Multiplexer A ALU
A Y=S?I1:10 A Y =F(A, B)

M A s
:g_) u Y
X >A|_ Y

S

Sequential Elements

A Register: stores data in a circuit

A Uses a clock signal to determine when to
update the stored value

A Edge-triggered: update when Clk
changes fromOto 1

Clk
D — —
D L X L X |
Clk —
> Q

Sequential Elements

A Register with write control

A Only updates on clock edge when write
control input is 1

A Used when stored value Is required later

Clk |
Write \,\ §
o~ [0 -
Write — D : :
Clk —>
Q

Clocking Methodology

A Combinational logic transforms data

during clock cycles

A Between clock edges

N

state element
A Longest delay determines clock period

state
element
T

combinational
logic

clock cycle J

state
element
2

—

A Input from state elements, output to

state
element

:

combinational
logic

10

Register File

A built using D flip -flops

—lread register
number 1 read
: data 1
read register
®lnumber 2
register file
write
— =
register read
: data 2
—\write |
data write

Register File

read register
number 1

read register
number 2

register O

register 1
e

register n-2

register n-1 |11

-+

(xczx M xc=z MW

- read datal

=» read data2

12

Register File

A Note: we still use the real clock to determine when to write

write

register
number

register
data

=

ele

O_0O|Jo_0O

n-to-2"
decoder
n-1
n

register O

register 1

C -
register
D

n-2

A 4

C
register
D

n-1

13

Instruction Fetch

instruction
address

instruction >

instruction
memory

PC

add

sum

14

Instruction Fetch

instruction

address

instruction

instruction
memory

add

sum

15

R- Format Instructions

4\l\ALU operation

read
data 1 2
#
registers ALU
result ’
read —
data 2

RegWrite

R- Format Instructions

instruction

ALU
result

read
register 1 ==
data 1
read
register 2
fite registers
register read
: data 2
rite
data
RegWrite

4\l\ALU operation

17

| oad/Store Instructions

MemWrite

=Pl ddress read —
data

data
memory

rite
’ |data

MemRead

sign
extend

| oad/Store Instructions

instruction

read
register 1 read
data 1
read
register 2
rite registers
register read
: data 2
rite
data
16 RegWrite .
sign
\ extend

4\l\ALU operation

MemWrite

#
—pladdress read
data

data
memory

32

rite
iata

MemRead

19

Branch Instructions

instruction

read
register 1 read
data 1
read
register 2
rite registers
register read
: data 2
rite
data
16 RegWrite '
sign
\ extend

32

4\l\ALU operation

ALU

zZero

PCH+4 mempr

add

> =

branch
control logic

branch
target

20

Composing the Elements

A First -cut data path does an
Instruction in one clock cycle

A Each datapath element can only do one
function at a time

A Hence, we need separate instruction and
data memories
A Use multiplexers where alternate data
sources are used for different
Instructions

21

Building the Datapath

read _

register 1 | ALU operation
ALU

read read

Instruction register 2 data 1 — Jero |-

rite registers
register read ALU
data 2 |——p] resuit

rite
data
RegWrite I

22

Building the Datapath

iggic'jster L | ALU operation
ALU
: : read €0 | :
Instruction register 2 data. 1 Zero = MemWrite MemtOReg
rite registers = I
register read M result ddress read M
data data

RegWrite | _ rite memory
sign ata
extend]

ALUSrc MemRead 3

Building the Datapath

PC

add

....lread

address

instruction

instruction
memory

read -
register 1 | ALU operation
- 5 ALU
rea CA0 | _
register 2 data 1 zero |=» MemWrite MemtoReg
rite registers I
register read M reQLlj_ItJ ddress read M
rite data 2 U data U
data data
RegWrite | _ rite — memory
sign .
extend I

ALUSrc MemRead 24

Building the Datapath

PC

...,lread

address

instruction

instruction
memory

X C<Z

read

register 1

read read

register 2 data 1
rite registers

register read
rite data 2

data

RegWrite I

sign
extend

PCSrc

| ALU operation
ALU
> zero |=» MemWrite MemtoReg
e dd I read M
result ress

data U
data

rite —memory

ata

|

ALUSrc MemRead

25

Building the Datapath

PC

....lread

address

instruction

instruction
memory

read
register 1

read
register 2

rite registers

read

X C<Z

@ PCSrc

| ALU operation
ALU

data 1

register read
: data 2
rite
data
RegWrite I

sign
extend

" 0 > MemWrite MemtoReg

ALU
result ddress read
data U
data
rite memory
ata
|

ALUSrc MemRead 26

Control

A Selecting the operations to perform (ALU, r/w)
A Controlling the flow of data (multiplexor inputs)
A Information comes from the 32 bits of instruction

add $8, $17, $18

000000

10001

10010

01000

00000

100000

op

IS

It

rd

shamt

funct

A ALU's operation based on instruction type and
function code

27

ALU Control

A what should the ALU do with this instruction
lw $1, 100($2)

35 2 1 100

op rs rt 16 bit number

A ALU control input

0000 AND
0001 OR
0010 add

0110 subtract
0111 set -on-less -than
1100 NOR

28

ALU Control

A must describe hardware to compute
4-bit ALU control input

A given instruction type
00 = lw, sw

ALUOp
01 = beq, >_Comput_ed from
10 = arithmetic instruction type

A function code for arithmetic

A describe it using a truth table (can
turn into gates):

29

ALU Control

Instruction ALUOp Funct desired ALU control

opcode field ALU action Input
LW 00 XXXXXX | add 0010
SW 00 XXXXXX | add 0010
Branch equal 01 XXXXXX | subtract 0110
R-type 10 100000 |add 0010
R-type 10 100010 | subtract 0110
R-type 10 100100 |and 0000
R-type 10 100101 |or 0001
R-type 10 101010 |seton less than 0111

30

ALU Control

ALUOp Funct field operation

ALUOpl1l [ALUOp2 (F5|F4 | F3 | F2 |F1 | FO

0 0 0010

0110

0010

0110

0000

0001

et e B o e D

XXX

XXX [X | X|X|X
XXX [X | X|X|X
R OO0 |Oo|X|X
OlRr| FR|O|lO]|X|X
R lolo|R|O|X|X
Olr | Oo|lOo|O|X|X

0111

31

The Main Control Unit

A Control signals derived from instruction

R-type

Load/
Store

Branch

0 rs rt rd shamt funct
31:26 25:21 20:16 15:41 10:6 5:0
35 or 43 rs rt address
31:26 25:21 20:16 \ 15:0 1
4 rs rt \ address
31:26 25:21 20:16 \ 15:0 \
opcode always read, write for sign -
read except R-type extend
for load and load and adg?

Building the Control

[25 -21] read
register 1 read
[20 -16] read data 1
instruction register 2
(31 -0] rite registers
register
9 read L
o data 2
data

sign
extend

[15 -O]

33

Datapath With Control

Add

Instruction [31-26]

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [25—-21]
[

RegDst
Branch

/

Add

\ MemRead

MemtoReg

» Control ALUOp

MemWrite

| ALUSrc

RegWrite

| Read

Instruction [20—16]

~ | register 1 Rgeag
| Read data 1

1

Instruction [15—11]
L >

“xc=C

Instruction [15-0]

o Write

register 2

Write Read
register data 2

data Registers

Zero
ALU 5y

»(0

result

“xe=2

Address data

Write
data

Read

Data
memory|

ALU

Oxc=—

Instruction [5-0]

controt

34

R-Type Instruction

Add

Read
address

Instruction
[31-0]

Instruction
memory

i

Instruction [31-26]

Instruction [25—-21
[

]

| Read

RegDst
Branch

MemRead

xec= ©

MemtoReg

» Control ALUOpD

MemWrite

/ ALUSrc

RegWrite

Instruction [20—16]

~ | register 1 peaqg

Instruction [15—11]
L -

0
M
u
X

1

Instruction [15-0]

o Write

Fead data 1
register 2

Write Read
register data?2

data Registers

Zero
ALU ALU
result

ALU

Oxc=

Instruction [5-0]

controt

35

L oad Instruction

> »{0
[] M
Add u
X
4 — 1
RegDst
Branch
\ MemRead
Instruction [31-26] MemtoReg
» Control ALUOpD
MemWrite
| ALUSrc
RegWrite
Instruction [25-21] Read
Read L 4 > i
.| PC address register 1 Read
Instruction [20-16] data 1
Instruction || 0 ALU zero
s M| wiie resuit [Address R0 —f
Instruction g register M M
memory ||e¢ 1 u X
| Write 1"
data Registers Data
memory
Instruction [15-0 16 ian- | 32 |
(15-0] Sign ALU I
extend

controt

36

Branch -on-Equal Instruction

4 —| Add

RegDst /

Branch
\ MemRead

/

Instruction [31-26] MemtoReg
» Control ALUOD

MemWrite
| ALUSrc

RegWrite
Instruction [25-21] R
| pc lé»| REad * > re%?ger1
address Read
Instruction [20-16] Read data 1
. > .
Instruction _I register 2
[31=0] Read 0
Instruction data 2 M M
memory ||e¢ g g
®
I Registers

Instruction [15-0]

ALU

controt

Implementing Jumps

address

31-26

25 -0

216 . 218 jump address|[31 -0]
instruction [25 -0]

PC+4[31

-28]

38

Datapath With Jumps Added

Instruction [25-0] Shift). Jump address [31-0]
left2/
26 28 | PC + 4[31-28] - L.
Add Iy — \ M
X
ALU
4 —= Add ot 0
RegDst =
Jump /
\ Branch
\ MemRead
Instruction [31-26] MemtoReg
» Control ALUOp
MemWrite
/ ALUSrc
RegWrite
Instruction [25=21] Read
| PC [0 Read ' —| register 1
address Read .
Instruction [20=16] Read data 1
Instruction '..I 5 —| register 2 T Zero
[31._‘0] M Write Read =fo réd:slzJLIJt »| Address Rdea%g ——s
Instruction | || siciion [15-11] & || register data 2 M M
memory : _ U 5
SECRON ||t :
egisters —| ' Write Data
> data_Mmemory
Instruction [15=0] 16 ® 32 |
{extend] = S . I
LUTIUOT
Instruction [5=0]

Control

instruc - | Reg | ALU | Mem | Reg | Mem | Mem | Branch | ALU | ALU
tion Dst | Src to | Write | Read | Write Opl | Op2
Reg
R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

40

Control

inputs

signal
Op5

R-format
0

s

%
=

(@
@D
0

Op4

Op3

Op2

Opl

OpO0

outputs

RegDst

ALUSTrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpPO

el lilelielioell jlie] ol o] le] o] o))

OO ORI PP OIOIO|EF

RO OO0 X| O X|O|O|—r|O|O| O

41

Control

A Simple combinational logic (truth tables)

Inputs
Op5
Op4
Op3
Op2
Op1
Op0 ° °
ALUOpO o0 £ 000 olo 000 Oé
ALUOp1
Outputs
R-format Iw sw beq
F3 +— RegDst
= >) ALUSrc
L
F (5-0) l) > MemtoReg
_’—0
F1) RegWrite
L_D_ \/ MemRead
MemWrite
Branch
42 ALUOp1

ALUOp2

Performance Issues

A Longest delay determines clock period
A Critical path: load instruction

N

A Instruction memory - register file - ALU -
data memory - register file

A Not feasible to vary period for different
Instructions

A Violates design principle
A Making the common case fast

A We will improve performance by pipelining

90

Performance of

Single - Cycle Machines

Instruction

Instruction

Register

ALU

Data

Register

class fetch read operation | access write ;ﬁil

!I—V(Vj)ad word 200 ps 100 ps 200 ps 200 ps | 100 ps | 800 ps
gvtv?fe Word 200 ps 100ps | 200ps | 200 ps 700 ps
Ej&(}‘gurmionsm 200 ps 100ps | 200 ps 100 ps | 600 ps
Branch 200ps | 100ps | 200 ps 500 ps

(beq)

91

Pipelining Analogy

A Pipelined laundry: overlapping execution
A Parallellsm |mproves performance

6 PM 7 > AM

Time — o o |

% masl A Four loads:
A @ =
: B0l A Speedup
C So=d___ =8/3.5=2.3

A Non -stop:
A Speedup
= 2n/ (0. 5n+:
= number of stages

92

MIPS Pipeline

A Five stages, one step per stage

1=
2.
3.

IF: Instruction fetch from memory
ID: Instruction decode & register read

EX: Execute operation or calculate
address

MEM: Access memory operand
WB: Write result back to register

93

Recall.
Single Cycle Implementation

PC

4

o

read

address

instruction

instruction
memory

read
register 1
read read
register 2 data 1
wrifegisters
register read
write cetas
data

sign
extend

ALU
Zero

ALU
result

yd

M
U
X
S
'.'Pladdress read
data
data
write memory
»] data

94

Toward Pipeline Implementation

M
U
X
4
memory
....l read read
PC address register 1 data
read read I register
: _ : A
instruction register 2 P—
instruction writggisters
— register d rteagl ddress read
> v&/rite ata data
i : ata
9| instruction F = memg?;a
register :
. >Jn data
extend

95

Step 1.
Instruction Fetch

A use PC to get instruction and put it in the Instruction
Register.

A increment the PC by 4 and put the result back in the
PC.

A can be described succinctly using RTL "Register
Transfer Language"

IR = Memory[PC],
PC =PC + 4,

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?

96

Step 2:
Instruction Decode & Register Fetch

A
A

A

read registers rs and rt in case we need them

compute the branch address in case the instruction is
a branch

RTL:

A = Reg[IR[25 -21]];
B = Reg[IR[20 -16]];
ALUOut = PC + (sign -extend(IR[15 -0]) << 2);

We aren't setting any control lines based on the
Instruction type

A we are busy "decoding" it in our control logic

97

Step 3: Execution Step
(instruction dependent)

A

A

ALU is performing one of three functions, based on
Instruction type

Memory Reference:
ALUOut = A +sign -extend(IR[15 -0]);

R-type:
ALUOut = A op B;

Branch:
if (A==B) PC = ALUOuUt;

Jump:
PC =PC[31 -28] || (IR[25 -0]<<2)

98

Step 4.
Memory - Access

A Loads and stores access memory

MDR = Memory[ALUOut];
or
Memory[ALUOut] = B;

99

Step 5: Write -back Step
(R-Type or Loads)

A Loads access memory
Reg[IR[20 -16]]= MDR:
A R-type instructions finish

Reg[IR[15 -11]] = ALUOUL;

100

Summary

= memory :
step R-type reference branch jump
1 IR=Memory[PC]
PC=PC+4
A=Reg[IR[25 -21]]
2 B=Reg[IR[20 -16]]
ALUOut=PC+(sign -extend(IR[15 -0])<<?2)
_ ALUOut=A+sign -extend if (A==B) PC=PC[31 -28]||
3 ALUOUt=A op B (IR[15 -0]) PC=ALUOut (IR[25 -0]<<2)
lw:MDR =Memory[ALUOut]
4 or
sw:Memory [ALUOut]=B
5 | ReglIRI1S -11]j= \w:Reg[IR[20 - 16]]=MDR

ALUOut

101

Non - Pipelining

A Improve performance by increasing
Instruction throughput

Program Time
execution
order _ i
Iw $1, 100($0) mSt:thCé'ﬁn Reg ALU a(?(i[zs ‘Reg
Iw $2, 200($0) “ 500 ps inst;gi:éir?n Reg ALU ‘
lw $3, 300($0) * 800 ps
A Ideal speedup is number of stages in the
= pipeline.
A Do we achieve this?

102

Pipelining

Program

execution
order

Iw $1, 100($0)

Iw $2, 200($0)

Iw $3, 300($0)

Time
instruction Data
fetch Eeg ALY access 2
Instruction Reg ALU Data Reg
“S00ps ps fetch access
mst;u;:tlk(])n Reg ALU Data Reg
*—jgﬁyﬁg———’ etc access
“200ps 200ps 200ps ~ 200ps 200 ps

103

Pipeline Speedup

A If all stages are balanced
A i.e., all take the same time

N

A Time between Instructions ;jined
= Time between instructions nonpipelined
Number of stages

A If not balanced, speedup is less

A Speedup due to increased throughput

A Latency (time for each instruction) does
not decrease

104

Hazards

A Situations that prevent starting the next
Instruction in the next cycle

A Structure hazards
A A required resource is busy

A Data hazard

A Need to wait for previous instruction to
complete its data read/write

A Control hazard

A Deciding on control action depends on
previous instruction

105

Structure Hazards

A Conflict for use of a resource

A In MIPS pipeline with a single memory
A Load/store requires data access

FaN

A Instruction fetch would have to stall for that
cycle
A Would cause a pipeline dAbub

A Hence, pipelined datapaths require
separate instruction/data memories

N

A Or separate instruction/data caches

106

Data Hazards

A An instruction depends on completion

of data access by a previous instruction
A add $s0, $t0, $t1

N

A sub $t2, $sO, $t3

A Solution
A Stalling
A Forwarding (a.k.a Bypassing)

107

Graphically Representing Pipelines

6
| |
add $s0, $t0, $t1 D -a WB :

>: > D

Time 2 Alf 3

10

shading on right half means MREADO
shading on left half means AWRITE O
white background means MNOT USEDO

dotted line means always MNO READO
and MNO WRITE oon ID and WB

>

108

Stalling

Program
execution
order

Time

MEM WB

bubble bubble bubble bubble ébubble ; !
v 4
bubble bubble bubble bubble

F .ﬂ:B
109

add $s0 , $t0, $t1

E

— N\
pEEN -
1 O

1

Forwarding

Program . 2 4 8
execution M€] I I
order

dd 0, $to, $t1
a $S $ $ ID
sub $t2, $sO , $t3 1D

110

Load - Use Data Hazard

Program . 2 4 6 8 10
execution Time | | | | >
order

111

Load - Use Data Hazard

Program . 2 4 6 8 10
execution Time | | | | | >
order

w $s0 , 20($t1) £ 1D -a MEM WB

sub $t2, $s0 , $t3

112

Load - Use Data Hazard

Program : 2 4 6 8 10
execution Time I |] | >
order

v
sub $t2, $s0 , $t3

113

Code Scheduling to Avoid Stalls

A Try and avoid stalls! e.g., reorder these instructions:

w $t0, O($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($tl1)

A Add a fibranch del ay sl oto
A the next instruction after a branch is always executed
A rely on compiler to Afill o the

A Superscalar: start more than one instruction in the
same cycle

114

Code Scheduling to Avoid Stalls

reg $t1 has the address of v[K]
lw $t0, O($t1) # reg $t0 (temp) = v[K]
lw $t2, 4($t1) # reg $t2 = v[k+1]
SW $t2, 0($t1) # v[Kk] = reg $t2
SW $t0O, 4($t1) # v[k+1] = reg $t0 (temp)
reorder
reg $t1 has the address of v[K]
lw $t0, 0($t1) # reg $t0 (temp) = v[K]
lw $t2, 4($t1) # reg $t2 = v[k+1]
SW $t0, 4($t1) # v[k+1] = reg $t0 (temp)
SW $t2, 0($t1) # v[K] = reg $t2

115

Control Hazards

A Branch determines flow of control

A Fetching next instruction depends on
branch outcome

A Pipeline cannot always fetch correct
Instruction

A Still working on ID stage of branch
A In MIPS pipeline

A Need to compare registers and compute
target early in the pipeline

A Add hardware to do it in ID stage

116

Solutions of Control Hazards

A stall
A certainly works, but is slow
A predict

A does not slow down the pipeline when
you are correct, otherwise redo

A delayed decision = delayed branch

117

Stall on Branch

Program

Time

execution
order

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

v

instruction Data
fetch Eeg ALY access 2
Instruction Reg ALU Data Reg
200 ps | fetch access
bubble bubble bubble ‘ bubble
instruction Reg ALU
) 400 ps |__feteh

118

Branch Prediction

A Longer pipelines cannot readily
determine branch outcome early

A Stall penalty becomes unacceptable

A Predict outcome of branch
A Only stall if prediction is wrong

A In MIPS pipeline
A Can predict branches not taken

N

A Fetch instruction after branch, with no delay

119

Predict

- branch will be untaken

Program Time

execution

DECeT instruction Data

add $4, $5, $6 fetch Reg ALU 2CCeSS Reg

instruction Data
beq $1, $2, 40 ‘W’ fetch Reg ALU access Reg
Instruction Reg ALU Data Reg

lw $3, 300(30) “500ps DS fetch access

v

120

Predict - failed

Program Time
execution

R instruction Data

add $4, $5, $6 fetch Reg ALU 2CCeSS Reg

instruction Data
beq $1, $2, 40 W fetch Reg ALU access Reg
‘ bubble bubble bubble ‘ bubble
instruction

——> or $7, $8, $9 < fetch Reg ALU

v 400 ps 1

121

Delayed Branch

delayed branch slot

Program Time
execution

EEC instruction Data

beq $1, $2, 40 fetch Reg ALU 2CCeSS Reg

instruction Data
add $4, $5, $6 W fetch Reg ALU access Reg
instruction Data
R AL R

or $7, $8, $9 ‘W’ fetch €d = access €9

A 4

122

More - Realistic Branch Prediction

A Static branch prediction
A Based on typical branch behavior
A Example: loop and if -statement branches

A Predict backward branches taken
A Predict forward branches not taken

A Dynamic branch prediction
A Hardware measures actual branch behavior
A e.g., record recent history of each branch
A Assume future behavior will continue the

trend
A When wrong, stall while re -fetching, and update

history

123

Recall.
Single Cycle Implementation

PC

4

o

read

address

instruction

instruction
memory

read
register 1
read read
register 2 data 1
wrifegisters
register read
write cetas
data

sign
extend

ALU
Zero

ALU
result

yd

X C<Z

-

'."Iaddress read

data
data
write memory
»| data

124

Pipelined Datapath

IF: instruction fetch

ID: instruction decode/

register file read

EX: execute/address
calculation

MEM: memory

M i i §
U § | |
X ; | @ i
| read |
| register 1 | |
; : ALU ;
4 : read read L > :
— | register 2 data1 I zero |=>
pclos read wrif€gisters
address ; register read | M ALY @*hddress read
instruction s write : !
| data ! ; data
instruction _ i / write memory
memory | sigh) >l data
! extend ; :
What do we need to add to actually split the datapath into stages? 125

access

Pipeline registers

PC

What instructions can we execute to manifest the problem?

J IF/ID ID/EX EX/MEM MEM/WB
M
— >
U
X
read
add egister 1
4 read read b
register 2 data 1 >
4| read wrifégisters
address register read R > bddress read M
: : : data 2 data U
instruction g = write
data data
instruction write memory
memory] o +»| data
>
Can you find a problem even if there are no dependencies? 126

Pipeline Operation

A Cycle -by-cycle flow of instructions
through the pipelined datapath
A fSingldcle-cycl ed pipeline
A Shows pipeline usage in a single cycle
A Highlight resources used

Ac.f. fcloakictyicl ed0 di agr am
A Graph of operation over time
A We will | ookclogktc yiicslienog

diagrams for load & store

127

Original Pipelined Datapath

IF/ID

ID/EX

Add

4 —

- Address

u PC

Instruction
memory

Instruction

:

Shift
left 2

EX/MEM

Read
register 1 Read
data 1
Read
= |register2
Registers a4
Write data 2|
" | register
Write
data
16\ Sign-
" extend

32

Address
Data
memory

Write
data

Read
data

MEM/WB

128

f or 0O ad, St or e

Iw
|

Instruction fetch

IF/ND ID/EX EX/MEM MEM/WB
>Add > = "
e ol
Shift
left 2
el
Address % ~ |Read
2 = | register 1 Read >
@ g data 1
= Read =
Instruction _ register2 foad
memory > ~ Registers ey = > Address Aead
Write data 2 > B 1
register Data
—> Yiiito memory
data
= o | Write
- 7| data
16 - -
y . | Sign- >
T | extend

129

f or L oad, St or e

130

