
Computer Organization and Structure

Homework #4

Due: 2014/12/9

1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes:

 Branch outcomes

a. T, T, NT, T

b. T, T, T, NT, NT

a. What is the accuracy of always-taken and always-out-taken predictors for this

sequence of branch outcomes?

b. What is the accuracy of the two-bit predictor for the first four branches in this

pattern, assuming that the predictor starts off in the bottom left state from Figure 1

(predict not taken).

Figure 1: The states in a 2-bit prediction scheme.

c. What is the accuracy of the two-bit predictor if this pattern is repeated forever?

d. Design a predictor that would achieve a perfect accuracy if this pattern is repeated

forever. Your predictor should be a sequential circuit with one output that provides a

prediction (1 for taken, 0 for not taken) and no inputs other than the clock and the

control signal that indicates that the instruction is a conditional branch.

e. What is the accuracy of your predictor from the above subquestion if it is given a

repeating pattern that is the exact opposite of this one?

2. Assuming that the breakdown of dynamic instructions into various instruction categories

is as follows:

 R-Type beq jmp lw sw

a. 50% 15% 10% 15% 10%

b. 30% 10% 5% 35% 20%

Also, assume the following branch predictor accurancies:

 Always-taken Always not-taken 2-bit

a. 40% 60% 80%

b. 60% 40% 95%

a. Stall cycles due to mispredicted branches increase the CPI. What is the extra CPI

due to mispredicted branches with the always-taken predictor? Assume that branch

outcomes are determined in the EX stage, that there are no data hazards, and that no

delay slots are used.

b. Repeat the above problem for the “always not-taken” predictor.

c. Repeat the above problem for the “2-bit” predictor.

d. With the 2-bit predictor, what speed-up would be achieved if we could convert half

of the branch instructions in a way that replaces a branch instruction with an ALU

instruction? Assume that correctly and incorrectly predicted instructions have the

same chance of being replaced.

e. With the 2-bit predictor, what speed-up would be achieved if we could convert half

of the branch instructions in a way that replaced each branch instruction with two

ALU instructions? Assume that correctly and incorrectly predicted instructions have

the same chance of being replaced.

f. Some branch instructions are much more predictable than others. If we know that

80% of all executed branch instructions are easy-to-predict loop-back branches that

are always predicted correctly, what is the accuracy of the 2-bit predictor on the

remaining 20% of the branch instructions?

3. What is the average CPI for each of the following 2 schemes taking to execute the code

sequence below? (Note: For the pipeline scheme, there are five stages: IF, ID, EX, MEM,

and WB. We assume the reads and writes of register file can occur in the same clock cycle,

and the stall circuits are available.)

add $t3, $s1, $s2

sub $t1, $s1, $s2

lw $t2, 100($t3)

sub $s1, $t1, $t2

a. single cycle scheme

b. pipelined scheme with data forwarding hardware (one from EX/MEM to ALU input,

and the other from MEM/WB to ALU input) available

4. Different instructions utilize different hardware blocks in the basic single-cycle

implementation. The next three problems refer to the following instruction:

 Instruction Interpretation

a. add Rd, Rs, Rt Reg[Rd]=Reg[Rs]+Reg[Rt]

b. lw Rt, Offs(Rs) Reg[Rt]=Mem[Reg[Rs]+Offs]

Figure 2: The basic implementation of the MIPS subset, including the necessary

multiplexors and control lines.

a. What are the values of control signals generated by the control in Figure 2 for this

instruction?

b. Which resources (blocks) perform a useful function for this instruction?

c. Which resources (blocks) produce outputs, but their outputs are not used for this

instruction? Which resources produce no outputs for this instruction?

Different execution units and blocks of digital logic have different latencies (time needed

to do their work). In Figure 2 there are seven kinds of major blocks. Latencies of blocks

along the critical (longest-latency) path for an instruction determine the minimum latency

of that instruction. For the following three problems, assume the following resource

latencies:

 I-Mem Add Mux ALU Regs D-Mem Control

a. 400ps 100ps 30ps 120ps 200ps 350ps 100ps

b. 500ps 150ps 100ps 180ps 220ps 1000ps 65ps

d. What is the critical path for a MIPS AND instruction?

e. What is the critical path for a MIPS load (LD) instruction?

f. What is the critical path for a MIPS BEQ instruction?

The basic single-cycle MIPS implementation in Figure 2 can only implement some

instructions. New instructions can be added to an existing ISA, but the decision whether

or not to do that depends, among other things, on the cost and complexity such an

addition introduces into the processor datapath and control. The next three problems refer

to this new instruction:

 Instruction Interpretation

a. add3 Rd, Rs, Rt,Rx Reg[Rd]=Reg[Rs]+Reg[Rt]+Reg[Rx]

b. sll Rt, Rd, Shift Reg[Rd]= Reg[Rt] << Shift (shift left by Shift bits)

g. Which existing blocks (if any) can be used for this instruction?

h. Which new functional blocks (if any) do we need for this instruction?

i. What new signals do we need (if any) from the control unit to support this

instruction?

5. The following piece of code has pipeline hazard(s) in it. Please try to reorder the

instructions and insert the minimum number of NOP to make it hazard-free. (Note:

Assume all the necessary forwarding logics exist)

haz: move $5, $0

lw $10, 1000($20)

addiu $20, $20, -4

addu $5, $5, $10

bne $20, $0, haz

6. We wish to add the instructions jr (jump register), sll (shift left logical), lui (load

upper immediate), and a variant of the lw (load word) instruction to the single-cycle

datapath. The variant of the lw instruction increments the index register after loading

word from memory. This instruction (l_inc) corresponds to the following two

instructions:

lw $rs, L($rt)

addi $rt, $rt, 1

Add any necessary datapaths and control signals to Figure 3 and show the necessary

additions to Table 1. You can photocopy Figure 3 and Table 1 to make it faster to show

the additions.

Instruction RegDst ALUSrc

Memto

Reg

Reg

Write

Mem

Read

Mem

Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

Table 1: The setting of the control lines is completely determined by the opcode fields of

the instruction.

Figure 3: The simple datapath with the control unit.

