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The Processor

 Logic Design Conventions

 Building a Datapath

 A Simple Implementation Scheme

 An Overview of Pipelining

 Pipelined Datapath and Control

 Data Hazards: Forwarding vs. Stalls

 Control Hazards

 Exceptions



Instruction Execution

 PC  instruction memory, fetch instruction

 Register numbers  register file, read 
registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC  target address or PC + 4
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Abstract / Simplified View

 Two types of functional units:
 elements that operate on data values (combinational)
 elements that contain state (sequential)
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Abstract / Simplified View

 Cannot just join wires together

 Use multiplexers
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Recall:
Logic Design Basics

 Information encoded in binary

 Low voltage = 0, High voltage = 1

 One wire per bit

 Multi-bit data encoded on multi-wire buses

 Combinational element

 Operate on data

 Output is a function of input

 State (sequential) elements

 Store information
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Recall:
Combinational Elements

 AND-gate

 Y = A & B

 Multiplexer

 Y = S ? I1 : I0

 Adder

 Y = A + B

 ALU

 Y = F(A, B)
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Sequential Elements

 Register: stores data in a circuit

 Uses a clock signal to determine when to 
update the stored value

 Edge-triggered: update when Clk 
changes from 0 to 1
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8



Sequential Elements

 Register with write control

 Only updates on clock edge when write 
control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write
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 Combinational logic transforms data 
during clock cycles

 Between clock edges

 Input from state elements, output to 
state element

 Longest delay determines clock period

Clocking Methodology

state
element

1

state
element

2

combinational
logic

clock cycle

combinational
logic

state
element
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Register File

 built using D flip-flops
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Register File
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Register File

 Note: we still use the real clock to determine when to write
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Instruction Fetch
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Instruction Fetch
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R-Format Instructions
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R-Format Instructions
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Load/Store Instructions
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Load/Store Instructions
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Branch Instructions
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Composing the Elements

 First-cut data path does an 
instruction in one clock cycle

 Each datapath element can only do one 
function at a time

 Hence, we need separate instruction and 
data memories

 Use multiplexers where alternate data 
sources are used for different 
instructions

21



22

Building the Datapath
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Building the Datapath
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Building the Datapath
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Building the Datapath
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Building the Datapath
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Control

 Selecting the operations to perform (ALU, r/w)
 Controlling the flow of data (multiplexor inputs)
 Information comes from the 32 bits of instruction

add $8, $17, $18

 ALU's operation based on instruction type and 
function code
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000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
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ALU Control

 what should the ALU do with this instruction

lw $1, 100($2)

 ALU control input
0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

 why is the code for subtract 110 and not 011?

35 2 1 100

op rs rt 16 bit number
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ALU Control

 must describe hardware to compute 
4-bit ALU control input

 given instruction type 
00 = lw, sw
01 = beq, 
10 = arithmetic

 function code for arithmetic

 describe it using a truth table (can 
turn into gates):

ALUOp 
computed from
instruction type
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ALU Control

instruction
opcode

ALUOp Funct
field

desired
ALU action

ALU control
input

LW 00 XXXXXX add 0010

SW 00 XXXXXX add 0010

Branch equal 01 XXXXXX subtract 0110

R-type 10 100000 add 0010

R-type 10 100010 subtract 0110

R-type 10 100100 and 0000

R-type 10 100101 or 0001

R-type 10 101010 set on less than 0111
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ALU Control

ALUOp Funct field operation

ALUOp1 ALUOp2 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111



The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always 
read

read, 
except 
for load

write for 
R-type 

and load

sign-
extend 
and add
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Building the Control
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Datapath With Control
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R-Type Instruction

35



Load Instruction
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Branch-on-Equal Instruction
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Implementing Jumps
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op addressJ
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shift
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26 28
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Datapath With Jumps Added
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Control

instruc-
tion

Reg
Dst

ALU
Src

Mem
to

Reg

Reg
Write

Mem
Read

Mem
Write

Branch ALU
Op1

ALU
Op2

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1
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Control
signal R-format lw sw beq

inputs Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

outputs RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1



 Simple combinational logic (truth tables)

Control

Operation 1

Operation 2

Operation 3

Operation

ALUOp1

F3

F2

F1

F0

F (5-0)

ALUOp0

ALUOp

ALU control block

R-format t Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp2
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Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU 
data memory  register file

 Not feasible to vary period for different 
instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining
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Performance of
Single-Cycle Machines

Instruction 
class

Instruction 
fetch

Register 
read

ALU 
operation

Data 
access

Register 
write

Total 
time

Load word
(lw)

200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store Word
(sw)

200 ps 100 ps 200 ps 200 ps 700 ps

R-format
(add,sub,and,or,slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch
(beq)

200 ps 100 ps 200 ps 500 ps
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Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

 Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/(0.5n+1.5) ≈ 4
= number of stages
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MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate 
address

4. MEM: Access memory operand

5. WB: Write result back to register

93
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Recall:
Single Cycle Implementation
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Toward Pipeline Implementation

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

A

B
ALU
Out

memory
data

register

instruction
register



96

Step 1:
Instruction Fetch

 use PC to get instruction and put it in the Instruction 
Register.

 increment the PC by 4 and put the result back in the 
PC.

 can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?
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Step 2:
Instruction Decode & Register Fetch

 read registers rs and rt in case we need them

 compute the branch address in case the instruction is 
a branch

 RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

 We aren't setting any control lines based on the 
instruction type 

 we are busy "decoding" it in our control logic
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Step 3: Execution Step
(instruction dependent)

 ALU is performing one of three functions, based on 
instruction type

 Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

 R-type:
ALUOut = A op B;

 Branch:
if (A==B) PC = ALUOut;

 Jump:
PC = PC[31-28] || (IR[25-0] << 2)
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Step 4:
Memory-Access

 Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;
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Step 5: Write-back Step
(R-Type or Loads)

 Loads access memory

Reg[IR[20-16]]= MDR;

 R-type instructions finish

Reg[IR[15-11]] = ALUOut;
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Summary

step R-type
memory

reference
branch jump

1
IR=Memory[PC]

PC=PC+4

2
A=Reg[IR[25-21]]
B=Reg[IR[20-16]]

ALUOut=PC+(sign-extend(IR[15-0])<<2)

3 ALUOut=A op B
ALUOut=A+sign-extend

(IR[15-0])
if (A==B) 

PC=ALUOut
PC=PC[31-28]||
(IR[25-0]<<2)

4
lw:MDR=Memory[ALUOut]

or
sw:Memory[ALUOut]=B

5
Reg[IR[15-11]]=

ALUOut
lw:Reg[IR[20-16]]=MDR



Non-Pipelining

 Improve performance by increasing 
instruction throughput

 Ideal speedup is number of stages in the 
pipeline.

 Do we achieve this?
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Pipelining
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Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does 
not decrease
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Hazards

 Situations that prevent starting the next 
instruction in the next cycle

 Structure hazards
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to 

complete its data read/write

 Control hazard
 Deciding on control action depends on 

previous instruction
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Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that 
cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require 
separate instruction/data memories

 Or separate instruction/data caches
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Data Hazards

 An instruction depends on completion 
of data access by a previous instruction

 add $s0, $t0, $t1

 sub $t2, $s0, $t3

 Solution

 Stalling

 Forwarding (a.k.a Bypassing)
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Graphically Representing Pipelines

 shading on right half means “READ”

 shading on left half means “WRITE”

 white background means “NOT USED”

 dotted line means always “NO READ”
and “NO WRITE” on ID and WB

Time

add $s0, $t0, $t1
IF MEMEX

2 4 6 8 10

ID WB
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Stalling

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF EXID

bubble bubble bubblebubblebubble

bubble bubble bubblebubble
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Forwarding

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF MEMEX WBID
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Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 IF MEMEX WBID
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Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

IF MEMEX WBID

lw $s0, 20($t1)

sub $t2, $s0, $t3 bubble
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Load-Use Data Hazard

Time 2 4 6 8 10Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 MEMEXID

bubble bubble bubble

IF MEMEXID WB

IF IDbubble



Code Scheduling to Avoid Stalls

 Try and avoid stalls!  e.g., reorder these instructions:

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

 Add a “branch delay slot”
 the next instruction after a branch is always executed
 rely on compiler to “fill” the slot with something useful

 Superscalar:  start more than one instruction in the 
same cycle
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Code Scheduling to Avoid Stalls

# reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = reg $t2

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

# reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

sw $t2, 0($t1) # v[k] = reg $t2

reorder



Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on 

branch outcome

 Pipeline cannot always fetch correct 
instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute 

target early in the pipeline

 Add hardware to do it in ID stage

116
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Solutions of Control Hazards

 stall

 certainly works, but is slow

 predict

 does not slow down the pipeline when 
you are correct, otherwise redo

 delayed decision = delayed branch
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Stall on Branch

instruction
fetch

Reg ALU
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execution

order

Time
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beq $1, $2, 40

or $7, $8, $9
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Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU

bubble bubble bubble bubble



Branch Prediction

 Longer pipelines cannot readily 
determine branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay
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Predict - branch will be untaken
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Predict - failed
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Delayed Branch
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More-Realistic Branch Prediction

 Static branch prediction
 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the 
trend
 When wrong, stall while re-fetching, and update 

history
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Recall:
Single Cycle Implementation
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Pipelined Datapath
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IF: instruction fetch ID: instruction decode/
register file read

EX: execute/address
calculation

MEM: memory
access

WB:
write
back

What do we need to add to actually split the datapath into stages?
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Pipeline registers
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Can you find a problem even if there are no dependencies?  
What instructions can we execute to manifest the problem?



Pipeline Operation

 Cycle-by-cycle flow of instructions 
through the pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We will look at “single-clock-cycle” 
diagrams for load & store
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Original Pipelined Datapath
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IF for Load, Store, …
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ID for Load, Store, …

130



EX for Load

131



MEM for Load

132



WB for Load

Wrong
register
number
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Corrected Datapath for Load

134



EX for Store

135



MEM for Store

136



WB for Store

137
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Corrected Datapath
- single-clock-cycle pipeline diagram
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Multi-Cycle Pipeline Diagram

 Can help with answering questions like:
 how many cycles does it take to execute this code?
 what is the ALU doing during cycle 4?
 use this representation to help understand datapaths

Program
execution

order

Time (in clock cycles)

lw $10, 20($1)

sub $11, $2, $3

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

DMALUIM Reg Reg

DMALUIM Reg Reg



Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle 140
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Pipelined Control
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Pipelined Control

 We have 5 stages.
What needs to be controlled in each stage?
 Instruction Fetch and PC Increment

 Instruction Decode / Register Fetch

 Execution

 Memory Stage

 Write Back

 How would control be handled in an 
automobile plant?
 a fancy control center telling everyone what to do?

 should we use a finite state machine?
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Pipelined Control

 Pass control signals along just like the data

Execution/Address
calculation

stage control lines

Memory access stage
control lines

stage control
lines

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Branch
Mem
Read

Mem
Write

Reg
Write

Memto
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X



Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation
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IF/ID ID/EX EX/MEM MEM/WB

EX WB

WB

M

WBMcontrol
instruction



Pipelined Control
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Example

 lw $10, 20($1)

 sub $11, $2, $3

 and $12, $4, $5

 or $13, $6, $7

 add $14, $8, $9
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Data Hazards
in ALU Instructions

 Problem with starting next instruction 
before first is finished
 dependencies that “go backward in time” are 

data hazards

 How about the following example?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)
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Dependencies
Time (in clock cycles)

CC 1
10

CC 2
10

CC 3
10

CC 4
10

CC 5
10/-20

CC 6
-20

CC 7
-20

CC 8
-20

CC 9
-20$2

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg
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Stalling

 Have compiler guarantee no hazards
 Where do we insert the “nops” ?

sub $2, $1, $3
nop
nop
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Problem:  this really slows us down!
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Forwarding

 Use temporary results, don’t wait for 

them to be written

 register file forwarding to handle 
read/write to same register

 ALU forwarding
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Forwarding
Time (in clock cycles)

CC 1
10
X
X

CC 2
10
X
X

CC 3
10
X
X

CC 4
10
-20
X

CC 5
10/-20

X
-20

CC 6
-20
X
X

CC 7
-20
X
X

CC 8
-20
X
X

CC 9
-20
X
X

$2
EX/MEM

MEM/WB

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg



Forwarding Unit – EX Hazard

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRs)
then ForwardA=10

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRt)
then ForwardB=10
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Forwarding Unit – MEM Hazard

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRs)
and (MEM/WB.RegisterRd=ID/EX.RegisterRs))
then ForwardA=01

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRt)
and (MEM/WB.RegisterRd=ID/EX.RegisterRt))
then ForwardB=01
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Control Values

mux control source explanation

ForwardA=00 ID/EX 1st ALU operand comes from the register file

ForwardA=10 EX/MEM
1st ALU operand is forwarded from the prior 
ALU result

ForwardA=01 MEM/WB
1st ALU operand is forwarded from data 
memory or an earlier ALU result

ForwardB=00 ID/EX 2nd ALU operand comes from the register file

ForwardB=10 EX/MEM
2nd ALU operand is forwarded from the prior 
ALU result

ForwardB=01 MEM/WB
2nd ALU operand is forwarded from data 
memory or an earlier ALU result



Forwarding Paths
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Example

 sub $2, $1, $3

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Can't always forward

 Load word can still cause a hazard:

 an instruction tries to read a register 
following a load instruction that writes to 
the same register.

 Thus, we need a hazard detection 
unit to “stall” the load instruction
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Load-Use Data Hazard
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

DMIM Reg

DMIM RegReg

DMIM RegReg

IM

DM

DMReg Reg

Reg
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bubble

Stalling

we can stall the pipeline by keeping an instruction in the same stage

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program

execution
order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

IM

DM

DMIM RegReg

DMIM RegReg

IM DMReg

DMReg Reg

IM

Reg



Load-Use Hazard Detection

 Stall by letting an instruction that won’t 
write anything go forward

 if (ID/EX.MemRead
and ((ID/EX.RegisterRt=IF/ID.RegisterRs)
or (ID/EX.RegisterRt=IF/ID.RegisterRt)))
then stall the pipeline
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How to Stall the Pipeline

 Force control values in ID/EX register
to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

174



Datapath with Hazard Detection
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Example

 lw $2, 20($1)

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Example

 lw $2, 20($1)

stall

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid 
hazards and stalls

 Requires knowledge of the pipeline 
structure
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Branch Hazards

 When we decide to branch, other 
instructions are in the pipeline!

 We are predicting “branch not taken”

 need to add hardware for flushing 
instructions if we are wrong
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Example of Branch Hazards

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative

44 and $12, $2, $5 #  branch to

48 or $13, $2, $6 #  40+4+7*4

52 add $14, $4, $2

56 slt $15, $6, $7

…

72 lw $4, 50($7)



187

Branch Hazards
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

40 beq $1, $3, 7

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

IM Reg

DMIM

DMIM Reg

DMIM Reg

IM

DM

DMReg Reg

Reg

Reg

Reg

Reg

Reg



Reducing Branch Delay

 Move hardware to determine outcome to 
ID stage
 Target address adder
 Register comparator

 Example: branch taken
36:  sub  $10, $4, $8
40:  beq $1,  $3, 7
44:  and  $12, $2, $5
48:  or   $13, $2, $6
52:  add  $14, $4, $2
56:  slt $15, $6, $7

...
72:  lw $4, 50($7)
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Example: Branch Taken
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Example: Branch Taken
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Data Hazards for Branches

 If a comparison register is a 
destination of 2nd or 3rd preceding 
ALU instruction

 Can resolve using forwarding

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target
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Data Hazards for Branches

 If a comparison register is a destination 
of preceding ALU instruction or 2nd 
preceding load instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target
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Data Hazards for Branches

 If a comparison register is a destination 
of immediately preceding load 
instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target
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Dynamic Branch Prediction

 In deeper and superscalar pipelines, 
branch penalty is more significant

 Use dynamic prediction
 Branch prediction buffer (aka branch history 

table)
 Indexed by recent branch instruction 

addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction
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1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted 
twice!

 Mispredict as taken on last iteration of 
inner loop

 Then mispredict as not taken on first 
iteration of inner loop next time around

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer
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1-Bit Predictor: Shortcoming

Predict not taken

Predict taken

Taken

Taken

Not taken

Not taken
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Loops and Prediction

 Consider a loop branch that branches 
9 times in a row, then is not taken 
once. What is the prediction accuracy 
for this branch, assuming the 
prediction bit for this branch remains 
in the 1-bit prediction buffer?

 Answer: 80%, WHY?



2-Bit Predictor

 Only change prediction on two 
successive mispredictions
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Predict not taken Predict not taken

Predict taken Predict taken

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken



Calculating the Branch Target

 Even with predictor, still need to 
calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted 
taken, can fetch target immediately
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Scheduling the Branch Delay Slot

add $s1, $s2, $s3
if $s2 = 0 then

if $s2 = 0 then

sub $t4, $t5, $t6
…

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3

sub $t4, $t5, $t6

sub $t4, $t5, $t6

Delay slot

Delay slot

Delay slot

from before from target from fall through
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Comparing Performance
of Several Control Schemes

 assume the operation times:

 memory units: 200ps

 ALU and adders: 100ps

 register file: 50ps

 clock cycle time of
single-cycle datapath

 200+50+100+200+50=600ps
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Comparing Performance
of Several Control Schemes

 the clock cycles of pipelined design:
 loads: 1 or 2

 1 for no load-use dependence
 2 for load-use dependence
 average = 1.5

 stores: 1
 ALU instructions: 1
 branches: 1 or 2

 1 for predicted correctly
 2 for not predicted correctly
 average = 1.25

 jumps: 2

 average CPI of pipelined design
 0.25x1.5+0.1x1+0.52x1+0.11x1.25+0.02x2=1.17

 assume the 
instruction mix:
 loads: 25%
 stores: 10%
 ALU: 52%
 branches: 11%
 jumps: 2%



Comparing Performance
of Several Control Schemes

 average instruction time of

 single-cycle datapath

 600ps

 pipelined design

 200x1.17=234ps
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Exceptions and Interrupts

 “Unexpected” events requiring change
in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing 
performance is hard
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Handling Exceptions

 In MIPS, exceptions managed by a 
System Control Coprocessor (CP0)

 Save PC of offending (or interrupted) 
instruction
 In MIPS: Exception Program Counter (EPC)

 Save indication of the problem
 In MIPS: Cause register

 We’ll assume 1-bit
 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180
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An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Example:

 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either

 Deal with the interrupt, or

 Jump to real handler
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Handler Actions

 Read cause, and transfer to relevant 
handler

 Determine action required

 If restartable
 Take corrective action

 use EPC to return to program

 Otherwise
 Terminate program

 Report error using EPC, cause, …
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Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
 add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware
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Pipeline with Exceptions
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Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the 
instruction

 Refetched and executed from scratch

 PC saved in EPC register

 Identifies causing instruction

 Actually PC + 4 is saved

 Handler must adjust
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Exception Example

 Exception on add in
40 sub  $11, $2, $4

44 and  $12, $2, $5

48 or   $13, $2, $6

4C add  $1,  $2, $1

50 slt $15, $6, $7

54 lw $16, 50($7)

…

 Handler
80000180 sw $25, 1000($0)

80000184 sw $26, 1004($0)

…
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Exception Example

214



Exception Example
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Multiple Exceptions

 Pipelining overlaps multiple instructions
 Could have multiple exceptions at once

 Simple approach: deal with exception 
from earliest instruction
 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!
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Imprecise Exceptions

 Just stop pipeline and save state
 Including exception cause(s)

 Let the handler work out
 Which instruction(s) had exceptions

 Which to complete or flush
 May require “manual” completion

 Simplifies hardware, but more complex 
handler software

 Not feasible for complex multiple-issue
out-of-order pipelines
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