
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Instructions:
Language of the Computer
 Operations and Operands

 of the Computer Hardware
 Signed and Unsigned Numbers
 Representing Instructions

 in the Computer
 Logical Operations
 Instructions for Making Decisions
 Supporting Procedures

 in Computer Hardware
 Communicating with People
 MIPS Addressing

 for 32-Bit Immediates and Addresses
 Translating and Starting a Program
 Arrays vs. Pointers

1

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have
simple instruction sets

2

The MIPS Instruction Set
 Used as the example throughout the

book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market
 Applications in consumer electronics,

network/storage equipment, cameras,
printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E
3

http://www.mips.com/

Arithmetic Operations
 Add and Subtract, 3 operands
 2 sources and 1 destination

 operand order is fixed
 destination first
 all arithmetic operations have this form

 Example:
 C code: a = b + c
 MIPS code: add a, b, c

4

Arithmetic Operations
 Design Principle 1:
 simplicity favors regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

5

Arithmetic Examples
 compiling two C assignments into MIPS
 C code: a = b + c;

 d = a - e;
 MIPS code: add a, b, c

 sub d, a, e

 compiling a complex C assignment into MIPS
 C code: f = (g + h) – (i + j)
 MIPS code: add $t0, g, h # temp t0 = g + h

 add $t1, i, j # temp t1 = i + j
 sub f, $t0, $t1 # f = t0 - t1

6

Register Operands
 Of course this complicates some things...
 C code: a = b + c + d;
 MIPS code: add a, b, c

 add a, a, d
 where a & b & c & d mean registers

 Arithmetic instructions use register
operands
 operands must be registers

7

8

Register Operands
 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2:
 smaller is faster
 c.f. main memory: millions of locations

Register Operand Example
 C code: f = (g + h) – (i + j)
 assume f, …, j in $s0, …, $s4

 MIPS code: add $t0, $s1, $s2
 add $t1, $s3, $s4
 sub $s0, $t0, $t1

9

10

Registers vs. Memory
 Arithmetic instructions operands must be

registers
 only 32 registers provided

 Compiler associates variables with registers
 What about programs with lots of variables

processor I/O

Control

Datapath

Input

Output

Memory

Memory Operands
 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers
 Store result from register to memory

 MIPS is Big Endian
 Most-Significant Byte at least address of a

word
 c.f. Little Endian: Least-Significant Byte at

least address

11

Memory Organization
 viewed as a large, single-dimension

array, with an address
 A memory address is an index into

the array
 “byte addressing" means that

the index points to a 8-bit
byte of memory

12

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

...

0

1

2

3

4

5

6

...

Big Endian vs. Little Endian

13

A B C D
Data

A

B

C

D

...

a

a+1

a+2

a+3

...

D

C

B

A

...

a

a+1

a+2

a+3

...

Memory

Memory

Big Endianness

Little Endianness

Memory Organization
 “bytes” are nice, but most data items use

larger "words"
 for MIPS
 a word is 32 bits or 4 bytes

 232 bytes with byte addresses from 0 to 232-1
 230 words with byte addresses 0, 4, 8, ... 232-4
 words are aligned (alignment restriction)
 Address must be a multiple of 4
 What are the least 2 significant bits of a word

address?
14

32 bits of data

32 bits of data

32 bits of data

32 bits of data

...

0

4

8

12

...

Word Addressing

15

Data

Index

Data
32 bits

1G
entries

Byte
offset

32

31…………….2

30

10
Address

00 01 10 11

2

32 bits of data

32 bits of data

32 bits of data

32 bits of data

...

0

4

8

12

...

Load & Store Instructions
 C code: g = h + A[8];
 g in $s1, h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
 add $s1, $s2, $t0
 index 8 requires offset of 32
 4 bytes per word

 can refer to registers by name

(e.g., $s2, $t0) instead of number

16

17

Load & Store Instructions
 C code: A[12] = h + A[8];
 h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
 add $t0, $s2, $t0
 sw $t0, 48($s3)

 store word has destination last
 remember arithmetic operands are registers,

not memory
 can’t write: add 48($s3), $s2, 32($s3)

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires

loads and stores
 More instructions to be executed

 Compiler must use registers for
variables as much as possible
 Only spill to memory for less frequently

used variables
 Register optimization is important!

18

19

Constants
 Small constants are used quite frequently
 e.g., A = A + 5;

 B = B + 1;
 C = C - 18;

 Solutions? Why not?
 Put 'typical constants' in memory and load

them?
 Create hard-wired registers (like $zero) for

constants like one?

The Constant Zero
 MIPS register 0 ($zero) is the

constant 0
 Cannot be overwritten

 Useful for common operations
 add $t2, $s1, $zero
 e.g., move between registers

20

Immediate Operands
 Constant data specified in an instruction
 addi $s3, $s3, 4

 No subtract immediate* instruction
 Just use a negative constant
 addi $s2, $s1, -1

 Design Principle 3:
 Make the common case fast
 Small constants are common
 Immediate operand avoids a load instruction

*e.g. subi 21

Numbers
 Bits are just bits (no inherent meaning)
 conventions define relationship between bits

and numbers
 Binary numbers (base 2)
 decimal: 0...2n-1

 Of course it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers

22

Unsigned Binary Integers
 Given an n-bit number

 Range: 0 to +2n – 1
 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

1 2 1 0
1 2 1 02 2 2 2n n

n nx x x x x− −
− −= + + + +

23

2’s-Complement Signed Integers
 Given an n-bit number

 Range: -2n-1 to +2n-1 – 1
 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20
= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

1 2 1 0
1 2 1 02 2 2 2n n

n nx x x x x− −
− −= − + + + +

24

2’s-Complement Signed Integers
 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same

unsigned and 2’s-complement
representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

25

Signed Negation
 Complement and add 1
 Complement means 1 → 0, 0 → 1

 Example: negate +2
 +2 = 0000 0000 … 00102
 –2 = 1111 1111 … 11012 + 1

 = 1111 1111 … 11102

 “negate” and “complement” are quite different!

21111...111 1
1

x x
x x
+ = = −
+ = −

26

Sign Extension
 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

27

Representing Instructions
 Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation

code (opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

28

29

MIPS R-format Instructions

 op = operation code (opcode)
 basic operation of the instruction

 rs / rt / rd
 register source / destination operand

 shamt = shift amount
 00000 for now

 funct = function code
 extends opcode

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

30

R-format Example

 add $t0, $s1, $s2

 000000100011001001000000001000002
= 0232402016

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 10001 10010 01000 00000 100000

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

Hexadecimal
 Base 16
 Compact representation of bit strings
 4 bits per hex digit

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

31

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

32

MIPS I-format Instructions

 Immediate arithmetic and load/store
instructions
 rs / rt: source or destination register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4:
 Good design demands good compromises

 Different formats complicate decoding, but allow 32-
bit instructions uniformly

 Keep formats as similar as possible

33

I-format Example

 lw $t0, 32($s2)
6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

lw $s2 $t0 32

35 18 8 32

100011 10010 01000 0000000000100000

35

C / MIPS / Machine Languages
 C: A[300] = h + A[300]
 MIPS: lw $t0, 1200($t1)

 add $t0, $s2, $t0
 sw $t0, 1200($t1)

 Machine Language:

0 18 8 8 0 32

35 9 8 1200

43 9 8 1200

Stored Program Concept
 Instructions are bits
 Programs are stored in

memory
 to be read or written just like

data
 Fetch & Execute

Cycle
 Instructions are

fetched and put
into a special register

 Bits in the register "control“
the subsequent actions

 Fetch the “next” instruction
and continue

36 memory for data, programs,
compilers, editors, etc.

Processor

Memory

Accounting program
(machine code)
Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

C code for
editor program

Logical Operations
Logical

operations
C

operators
MIPS

instructions
Shift left << sll

Shift right >> srl

Bitwise AND & and, andi

Bitwise OR | or, ori

37

38

Logical Operations

 There is no NOT, since …
 NOT (A) = NOT (A OR 0) = A NOR 0

Instruction Example
and and $s1, $s2, $s3

or or $s1, $s2, $s3

nor nor $s1, $s2, $s3

and immediate andi $s1, $s2, 100

or immediate ori $s1, $s2, 100

shift left logical sll $s1, $s2, 10

shift right logical srl $s1, $s2, 10

39

Shift Operations

 shamt: how many positions to shift
 Shift left logical
 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

40

Shift Operations
 NOTICE
 shift left/right logical is not I-type

 Example: sll $t2, $s0, 4
 Machine Language:

0 0 16 10 4 0

op rs rt rd shamt funct

special none $s0 $t2 4 sll

AND Operations
 Useful to mask bits in a word
 Select some bits, clear others to 0

 and $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000
 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000
 $t0 = 0000 0000 0000 0000 0000 1100 0000 0000

41

OR Operations
 Useful to include bits in a word
 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000
 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000
 $t0 = 0000 0000 0000 0000 0011 1101 1100 0000

42

NOT Operations
 Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction
 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero
 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000
 $t0 = 1111 1111 1111 1111 1100 0011 1111 1111

43

44

Conditional Operations
 Decision making instructions
 alter the control flow,
 i.e., change the "next" instruction to be

executed
 MIPS conditional branch instructions:
 bne $t0, $t1, Label
 beq $t0, $t1, Label

 Example: if (i==j) h = i + j;

 bne $s0, $s1, Label

 add $s3, $s0, $s1
 Label:

45

Unconditional Operations
 MIPS unconditional branch instructions:
 j Label

 (Un-)Conditional Branch Example:
if (i==j) bne $s3, $s4, Else
 f=g+h; add $s0, $s1, $s2
else j Exit

f=g-h; Else: sub $s0, $s1, $s2
 Exit: ...

 Can you build a simple for / while loop ?

Assembler
calculates
addresses

46

While Loop
C:
while (save [i] == k) i += 1;

 assume i in $s3, k in $s5, address of save in $s6

MIPS:
Loop: sll $t1, $s3, 2 # $t1=4*i
 add $t1, $t1, $s6 # $t1=addr. of save[i]
 lw $t0, 0($t1) # $t0=save[i]
 bne $t0, $s5, Exit # go to Exit if save[i]!=k
 addi $s3, $s3, 1 # i+=1
 j Loop # go to Loop
Exit:

48

Control Flow
 set on less than:

if ($s3 < $s4) slt $t1, $s3, $s4
 $t1=1;
else

$t1=0;

 can use this instruction to build
 “blt $s1, $s2, Label”
 can now build general control structures

 NOTE
 the assembler needs a register to do this,
 there are policy of use conventions for registers

$s slti $s

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠
 Combining with branch involves more work

per instruction, requiring a slower clock
 All instructions penalized!

 beq and bne are the common case
 This is a good design compromise

49

50

Case/Switch in C
switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g-h; break; /* k=2 */
 case 3: f=i-j; break; /* k=3 */
}

51

Case/Switch in MIPS
-- using Jump Address Table
 slt $t3, $s5, $zero # test if k < 0
 bne $t3, $zero, Exit # if k < 0, go to Exit
 slti $t3, $s5, 4 # test if k < 4
 beq $t3, $zero, Exit # if k >= 4, go to Exit
 sll $t1, $s5, 2 # $t1 = 4 * k
 add $t1, $t1, $t4 # $t1=addr. of JumpTable[k]
 lw $t0, 0($t1) # $t0= JumpTable[k]
 jr $t0 # jump based on $t0
L0: add $s0, $s3, $s4 # k = 0, so f gets i + j
 j Exit # end of this case so go to Exit
L1: add $s0, $s1, $s2 # k = 1, so f gets g + h
 j Exit # end of this case so go to Exit
L2: sub $s0, $s1, $s2 # k = 2, so f gets g - h
 j Exit # end of this case so go to Exit
L3: sub $s0, $s3, $s4 # k = 3, so f gets i - j
Exit: # end of switch statement

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
 slt $t0, $s0, $s1 # signed
 –1 < +1 ⇒ $t0 = 1

 sltu $t0, $s0, $s1 # unsigned
 +4,294,967,295 > +1 ⇒ $t0 = 0

52

Procedure Calling
 Steps required
 Place parameters in registers
 Transfer control to procedure
 Acquire storage for procedure
 Perform procedure’s operations
 Place result in register for caller
 Return to place of call

53

54

Register Usage
Name Register No. Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results & expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries (can be overwritten by callee)

$s0-$s7 16-23 saved (must be saved/restored by callee)

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

Procedure Call Instructions
 Procedure call: jump and link
 jal ProcedureLabel
 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
 jr $ra
 Copies $ra to program counter
 Can also be used for computed jumps
 e.g., for case/switch statements

55

56

Leaf Procedure in C
int leaf_example (int g, int h, int i, int j) {
 int f;

 f = (g+h)-(i+j);
 return f;
}

 Assume
 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

57

Leaf Procedure in MISP
addi $sp, $sp, -4 # adjust stack for saving $s0
sw $s0, 0($sp)
add $t0, $a0, $a1 # g+h
add $t1, $a2, $a3 # i+j
sub $s0, $t0, $t1 # (g+h)-(i+j)
add $v0, $s0, $zero # return f ($v0=$s0+0)
lw $s0, 0($sp)
addi $sp, $sp, 4 # adjust stack again
jr $ra # jump back to calling routine

58

The Stack

contents of register $s0 $sp

High address

Low address

$sp

Non-Leaf Procedures
 Procedures that call other procedures
 For nested call, caller needs to save

on the stack:
 Its return address
 Any arguments and temporaries needed

after the call
 Restore from the stack after the call

59

60

Recursive Procedure in C
int fact (int n) {
 if (n < 1)
 return 1;
 else
 return (n * fact (n - 1));
}

 Assume
 Argument n in $a0
 Result in $v0

61

Recursive Procedure in MISP
fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save the return address
 sw $a0, 0($sp) # save the argument n
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1 # if n >= 1, go to L1
 addi $sp, $sp, 8 # pop 2 items off stack
 addi $v0, $zero, 1 # return 1
 jr $ra # return to after jal
L1: addi $a0, $a0, -1 # n >= 1: argument gets (n - 1)
 jal fact # call fact with (n - 1)
 lw $a0, 0($sp) # return from jal: restore argument n
 lw $ra, 4($sp) # restore the return address
 addi $sp, $sp, 8 # adjust stack pointer to pop 2 items
 mul $v0, $a0, $v0 # return n * fact (n - 1)
 jr $ra # return to the caller

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

62

saved argument
registers (if any)

saved return address

saved saved
registers (if any)

local arrays and
structures (if any) $sp

High address

Low address

$sp

$fp

$fp

Memory Layout
 Text: program code
 Static data: global variables
 e.g., static variables in C, constant

arrays and strings
 $gp initialized to address allowing

±offsets into this segment
 Dynamic data: heap
 E.g., malloc in C

 Stack: automatic storage

Stack

↓

↑

Dynamic data

Static data

Text

$sp→7fff fffchex

$gp→1000 8000hex
1000 0000hex

$pc→0040 0000hex

0
Reserved

63

Character Data
 Byte-encoded character sets
 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

64

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store
 String processing is a common case

 lb rt, offset(rs) lh rt, offset(rs)
 Sign extend to 32 bits in rt

 lbu rt, offset(rs) lhu rt, offset(rs)
 Zero extend to 32 bits in rt

 sb rt, offset(rs) sh rt, offset(rs)
 Store just rightmost byte/halfword

65

66

String Copy Procedure in C
void strcpy (char x[], char y []) {
 int i;

 i = 0;
 while (x[i] = y[i] != ‘¥0’) {
 i = i + 1;
 }
}

 Assume
 Null-terminated string
 Addresses of x, y in $a0, $a1, i in $s0

67

String Copy Procedure in MIPS
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # address of y[i] in $t1
 lb $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # address of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # if y[i] == 0, go to L2
 addi $s0, $s0, 1 # i = i + 1
 j L1 # go to L1
L2: lw $s0, 0($sp) # restore old $s0
 addi $sp, $sp, 4
 jr $ra

32-bit Constants
 Most constants are small
 16-bit immediate is sufficient

 For the occasional 32-bit constant
 lui rt, constant
 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lui $s0, 61
ori $s0, $s0, 2304

0000 0000 0000 0000 0000 0000 0111 1101

0000 1001 0000 0000 0000 0000 0111 1101

68

Branch Addressing
 Instructions:
 bne $s0,$s1,L1
 beq $s0,$s1,L2

 Formats:

 Most branch targets are near branch
 Forward or backward

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

69

op rs rt 16 bit number I

Jump Addressing
 Instructions:
 j L1
 jal L2

 Formats:

 Jump targets could be anywhere in text
segment
 Encode full address in instruction

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

70

op 26 bit number J

71

Target Addressing Example
C:
while (save [i] == k) i += 1;

MIPS:
Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit:

0 9 22 9 0 32
35 9 8 0

2 20000

5 8 21 2
8 19 19 1

0 0 19 9 4 0 80000
80004
80008
80012
80016
80020
80024 …

Branching Far Away
 If branch target is too far to encode

with 16-bit offset, assembler rewrites
the code

 Example
 beq $s0,$s1, L1
 ↓
 bne $s0,$s1, L2

 j L1
L2: ...

72

73

Addressing Modes
 Immediate addressing

 Register addressing

op rs rt immediate

op rs rt rd shamt funct
Register
Registers

74

Addressing Modes
 Base addressing

op rs rt address

Register

Word Halfword Byte

Memory

+

75

Addressing Modes
 PC-relative addressing

 Pseudodirect addressing

op rs rt address

PC
Word

Memory

+

op address

PC
Word

Memory

:

76

Decoding Machine Code
 What is the assembly language statement

corresponding to this machine instruction?
 00af8020hex

 0000 0000 1010 1111 1000 0000 0010 0000

 op = 000000  R-format
 rs = 00101 (a1)/ rt = 01111 (t7)/ rd = 10000 (s0)
 shamt = 00000 / funct = 100000  add

 add $s0, $a1, $t7

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

77

Translation and Startup
C program

Assembly language program

Memory

Machine language program

Compiler

Assembler

Loader

Linker

Object: Machine language module Object: Library routine

Many compilers
produce object
modules directly

Static
linking

Assembler Pseudoinstructions
 Most assembler instructions represent

machine instructions one-to-one
 Pseudoinstructions: figments of the

assembler’s imagination
 move $t0, $t1 → add $t0, $zero, $t1
 blt $t0, $t1, L → slt $at, $t0, $t1

 bne $at, $zero, L
 $at (register 1): assembler temporary

78

Producing an Object Module
 Assembler (or compiler) translates program

into machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of

the program
 Relocation info: for contents that depend on

absolute location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

79

Linking Object Modules
 Produces an executable image

1. Merges segments
2. Resolve labels (determine their addresses)
3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute

location in virtual memory space

80

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine
 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

81

Dynamic Linking
 Only link/load library procedure when

it is called
 Requires procedure code to be

relocatable
 Avoids image bloat caused by static

linking of all (transitively) referenced
libraries

 Automatically picks up new library
versions

82

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

DLL routine
...
jr

Text

jal
...
jr

Text

Data

li ID
j

Text

Dynamic linker/loader
remap DLL routine
j

Text

DLL routine
...
jr

Text

jal
...
jr

Text

Data

First call
to DLL routine

Subsequent calls
to DLL routine

83

Arrays vs. Pointers
 Array indexing involves
 Multiplying index by element size
 Adding to array base address

 Pointers correspond directly to
memory addresses
 Can avoid indexing complexity

84

85

Array vs. Pointers in C
void clear1 (int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

void clear2 (int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size]; p += 1)
 *p = 0;
}

86

Array Version of Clear in MIPS
 add $t0, $zero, $zero
loop1: sll $t1, $t0, 2
 add $t2, $a0, $t1
 sw $zero, 0($t2)
 addi $t0, $t0, 1
 slt $t3, $t0, $a1
 bne $t3, $zero, loop1

87

Pointer Version of Clear in MIPS
 add $t0, $a0, $zero
loop2: sw $zero, 0($t0)
 addi $t0, $t0, 4
 sll $t1, $a1, 2
 add $t2, $a0, $t1
 slt $t3, $t0, $t2
 bne $t3, $zero, loop2

88

New Pointer Version of Clear
 add $t0, $a0, $zero
 sll $t1, $a1, 2
 add $t2, $a0, $t1
loop2: sw $zero, 0($t0)
 addi $t0, $t0, 4
 slt $t3, $t0, $t2
 bne $t3, $zero, loop2

89

Comparing the Two Versions
 add $t0, $zero, $zero
lp1: sll $t1, $t0, 2
 add $t2, $a0, $t1
 sw $zero, 0($t2)
 addi $t0, $t0, 1
 slt $t3, $t0, $a1
 bne $t3, $zero, lp1

 add $t0, $a0, $zero
 sll $t1, $a1, 2
 add $t2, $a0, $t1
lp2 : sw $zero, 0($t0)
 addi $t0, $t0, 4
 slt $t3, $t0, $t2
 bne $t3, $zero, lp2

Comparison of Array vs. Pointer
 Multiply “strength reduced” to shift
 Array version requires shift to be inside

loop
 Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination
 Better to make program clearer and safer

90

91

Summary:
MIPS Operands

Name Example Comments

32 registers

$s0-$s7,
$t0-$t9,
$zero,
$a0-$a3,
$v0-$v1,
$gp, $fp, $sp, $ra,
$at

Fast locations for data. In MIPS,
data must be in registers to
perform arithmetic. MIPS
register $zero always equals 0.

230 memory words

Memory[0],
Memory[4], …,
Memory[4294967292]

Accessed only by data transfer
instructions. MIPS uses byte
addresses, so sequential words
differ by 4. Memory holds data
structures, such as arrays, and
spilled registers, such as those
saved on procedure calls.

92

Summary:
MIPS Assembly Language

Category Instruction Example Meaning Comments

Arithmetic

add add $s1, $s2, $s3 $s1=$s2+$s3 Three register operands

subtract sub $s1, $s2, $s3 $s1=$s2-$s3 Three register operands

add immediate addi $s1, $s2, 100 $s1=$s2+100 Used to add constants

Conditional
branch

branch on equal beq $s1, $s2, 25 if ($s1==$s2) go to
PC+4+100 Equal test; PC-relative branch

branch on not
equal bne $s1, $s2, 25 if ($s1!=$s2) go to

PC+4+100 Not equal test; PC-relative

set on less than slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0

Compare less than;
for beq, bne

set less than
immediate slti $s1, $s2, 100 if ($s2<100) $s1=1 else

$s1=0 Compare less than constant

Uncondi-
tional
jump

jump j 2500 go to 10000 Jump to target address

jump register jr $ra go to $ra For switch, procedure return

jump and link jal 2500 $ra=PC+4; go to 10000 For procedure call

93

Summary:
MIPS Assembly Language

Category Instruction Example Meaning Comments

Data
transfer

load word lw $s1, 100($s2) $s1=Memory[$s2+100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2+100]=$s1 Word from register to memory

load half lh $s1, 100($s2) $s1=Memory[$s2+100] Halfword from memory to
register

store half sh $s1, 100($s2) Memory[$s2+100]=$s1 Halfword from register to
memory

load byte lb $s1, 100($s2) $s1=Memory[$s2+100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2+100]=$s1 Byte from register to memory

load upper immed. lui $s1, 100 $s1=100*216 Loads constant in upper 16 bits

Logical

and and $s1, $s2, $s3 $s1=$s2&$s3 Bit-by-bit AND

or or $s1, $s2, $s3 $s1=$s2|$s3 Bit-by-bit OR

nor nor $s1, $s2, $s3 $s1=~($s2|$s3) Bit-by-bit NOR

and immediate andi $s1, $s2, 100 $s1=$s2&100 Bit-by-bit AND reg with
constant

or immediate ori $s1, $s2, 100 $s1=$s2|100 Bit-by-bit OR reg with constant

shift left logical sll $s1, $s2, 10 $s1=$s2<<10 Shift left by constant

shift right logical srl $s1, $s2, 10 $s1=$s2>>10 Shift right by constant

	Computer�Organization and Structure
	Instructions:�Language of the Computer
	Instruction Set
	The MIPS Instruction Set
	Arithmetic Operations
	Arithmetic Operations
	Arithmetic Examples
	Register Operands
	Register Operands
	Register Operand Example
	Registers vs. Memory
	Memory Operands
	Memory Organization
	Big Endian vs. Little Endian
	Memory Organization
	Word Addressing
	Load & Store Instructions
	Load & Store Instructions
	Registers vs. Memory
	Constants
	The Constant Zero
	Immediate Operands
	Numbers
	Unsigned Binary Integers
	2’s-Complement Signed Integers
	2’s-Complement Signed Integers
	Signed Negation
	Sign Extension
	Representing Instructions
	MIPS R-format Instructions
	R-format Example
	Hexadecimal
	MIPS I-format Instructions
	I-format Example
	C / MIPS / Machine Languages
	Stored Program Concept
	Logical Operations
	Logical Operations
	Shift Operations
	Shift Operations
	AND Operations
	OR Operations
	NOT Operations
	Conditional Operations
	Unconditional Operations
	While Loop
	Control Flow
	Branch Instruction Design
	Case/Switch in C
	Case/Switch in MIPS�-- using Jump Address Table
	Signed vs. Unsigned
	Procedure Calling
	Register Usage
	Procedure Call Instructions
	Leaf Procedure in C
	Leaf Procedure in MISP
	The Stack
	Non-Leaf Procedures
	Recursive Procedure in C
	Recursive Procedure in MISP
	Local Data on the Stack
	Memory Layout
	Character Data
	Byte/Halfword Operations
	String Copy Procedure in C
	String Copy Procedure in MIPS
	32-bit Constants
	Branch Addressing
	Jump Addressing
	Target Addressing Example
	Branching Far Away
	Addressing Modes
	Addressing Modes
	Addressing Modes
	Decoding Machine Code
	Translation and Startup
	Assembler Pseudoinstructions
	Producing an Object Module
	Linking Object Modules
	Loading a Program
	Dynamic Linking
	Lazy Linkage
	Arrays vs. Pointers
	Array vs. Pointers in C
	Array Version of Clear in MIPS
	Pointer Version of Clear in MIPS
	New Pointer Version of Clear
	Comparing the Two Versions
	Comparison of Array vs. Pointer
	Summary:�MIPS Operands
	Summary:�MIPS Assembly Language
	Summary:�MIPS Assembly Language

