
Computer Organization and Structure 
Homework #3 

Due: 2013/11/12 
 

1. Given the bit pattern: 
 

1010 1101 0001 0000 0000 0000 0000 0010 
 
what does it represent, assuming that it is 
 
a. A two’s complement integer? 
b. An unsigned integer? 
c. A single precision floating-point number? where we use the IEEE 754 floating-point 

standard which represents a floating-point number as ( 1) (1 ) 2S EF− × + ×  and 
encodes the S, F, and E ordering using 1, 23, and 8 bits, respectively. 

d. A MIPS instruction? 
 
2. With x = 0000 0000 0000 0000 0000 0000 0101 1011two and y = 0000 0000 0000 0000 

0000 0000 0000 1101two representing two’s complement signed integers, perform, 
showing all work: 

 
a. x+y 
b. x-y 
c. x*y 
d. x/y 

 
3. Given the following three functions: 
 

a. A two-bit-wide shifter takes two input signals, 0i  and 1i , and shifts them to two 
outputs, 0o  and 1o , under the control of a shift signal. If this signal SHIFT is false, 
then the inputs are connected straight through to the outputs. If SHIFT is true, then 

0i  is routed to 1o  and 0o  should be set to a 0 . 
b. A two-bit demultiplexer takes an input signal IN and shifts it to one of two outputs, 

0o  and 1o , under the control of a single SELECT signal. If SELECT is 0 , then IN 
is connected through to 0o  and 1o  is connected to a 0 . If SELECT is 1, then IN 
is connected through to 1o  and 0o  is connected to a 0 . 

c. A two-bit multiplexer takes two input signals, 0i  and 1i , and shifts one of them to 
the single output OUT under the control of a one-bit SELECT signal. If the SELECT 
signal is false, then 0i  is passed to OUT. If SELECT is true, then 1i  is passed to 
OUT. 

d. A four-input function that outputs a 1 whenever an odd number of its inputs are 1. 
 

Complete the following four items: 
 



a. Construct their truth tables. 
b. What are the functions in sum of products forms? (you can just use “little m” 

notation) 
c. Use the Karnaugh map method to simplify the functions in sum of products forms. 
d. Draw logic schematics using AND, OR, and INVERT gates. 

 
4. Let’s look in more detail at multiplication. We will use the numbers in the following table. 

 
 A B 
1 50 23 
2 66 04 
 

a. Using a table similar to 
the following one, 
calculate the product of 
the octal unsigned 6-bit 
integers A and B using the 
hardware as shown in the 
right figure. You should 
show the contents of each register on each step. 
 
Iteration Step Multiplier Multiplicand Product 

0 Initial values 0011 0000 0010 0000 0000 
1 1a: 1⇒Prod=Prod+Mcand 0011 0000 0010 0000 0010 

2: Shift left Multiplicand 0011 0000 0100 0000 0010 
3: Shift right Multiplier 0001 0000 0100 0000 0010 

2 1a: 1⇒Prod=Prod+Mcand 0001 0000 0100 0000 0110 
2: Shift left Multiplicand 0001 0000 1000 0000 0110 
3: Shift right Multiplier 0000 0000 1000 0000 0110 

3 1: 0⇒No operation 0000 0000 1000 0000 0110 
2: Shift left Multiplicand 0000 0001 0000 0000 0110 
3: Shift right Multiplier 0000 0001 0000 0000 0110 

4 1: 0⇒No operation 0000 0001 0000 0000 0110 
2: Shift left Multiplicand 0000 0010 0000 0000 0110 
3: Shift right Multiplier 0000 0010 0000 0000 0110 

 
b. Using a table similar to 

the above one, calculate 
the product of the 
hexadecimal unsigned 
8-bit integers A and B 
using the hardware as 
shown in the right figure. 
You should show the 
contents of each register 
on each step.  



 
5. The ALU supported set on less than (slt) using just the sign bit of the adder. Let’s try a set 

on less than operation using the values -7ten and 6ten. To make it simpler to follow the 
example, let’s limit the binary representations to 4 bits: 1001two and 0110two. 
 
1001two – 0110two = 1001two + 1010two = 0011two 
 
This result would suggest that -7ten > 6ten, which is clearly wrong. Hence we must factor 
in overflow in the decision. Modify the 1-bit ALU in the following figures to handle slt 
correctly. 
 

0

1

a

b
result

operation

+ 2

cin

cout

0
1

binvert

less 3

 
Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b’. 
 

0

1

a

b
result

operation

+ 2

cin

0
1

binvert

less 3

overflow
detection overflow

set

 
Figure 2: A 1-bit ALU for the most significant bit. 

 


