
Computer Organization and Structure 

Homework #3 

Due: 2010/11/16 

 

1. Given the bit pattern: 

 

1010 1101 0001 0000 0000 0000 0000 0010 

 

what does it represent, assuming that it is 

 

a. A two’s complement integer? 

b. An unsigned integer? 

c. A single precision floating-point number? 

d. A MIPS instruction? 

 

2. We have shown how to add and subtract binary and decimal numbers. However, other 

numbering systems were also very popular when dealing with computers. Octal (base 8) 

numbering system was one of these. The following table shows pairs of octal numbers. 

 

 A B 

1 5323 2275 

2 0147 3257 

 

a. What is the sum of A and B if they represent unsigned 12-bit octal numbers? The 

result should be written in octal. Show your work. 

b. What is the sum of A and B if they represent signed 12-bit octal numbers stored in 

sign-magnitude format? The result should be written in octal. Show your work. 

c. Convert A into a decimal number, assuming it is unsigned. Repeat assuming it stored 

in sign-magnitude format. Show your work. 

 

The following table also shows pars of octal numbers. 

 

 A B 

1 2762 2032 

2 2646 1066 

 

d. What is A - B if they represent unsigned 12-bit octal numbers? The result should be 

written in octal. Show your work. 

e. What is A - B if they represent signed 12-bit octal numbers stored in sign-magnitude 

format? The result should be written in octal. Show your work. 

f. Convert A into a binary number. What makes base 8 (octal) an attractive numbering 

system for representing values in computers. 

 

3. A majority function is generated in a combinational circuit when the output is equal to 1 if 

the input variables have more 1’s than 0’s. The output is 0 otherwise. 

 

a. Please write the truth table for a 4-input majority function. 



b. Please use the Karnaugh map to find the minimum sum of products form and the 

minimum sum of products form for the complement. 

c. Please draw the logic schematic by using AND, OR, and INVERT gates. 

 

4. The ALU supported set on less than (slt) using just the sign bit of the adder. Let’s try a set 

on less than operation using the values -7ten and 6ten. To make it simpler to follow the 

example, let’s limit the binary representations to 4 bits: 1001two and 0110two. 

 

1001two – 0110two = 1001two + 1010two = 0011two 

 

This result would suggest that -7ten > 6ten, which is clearly wrong. Hence we must factor 

in overflow in the decision. Modify the 1-bit ALU in the following figures to handle slt 

correctly. 

 

0

1

a

b

result

operation

+ 2

cin

cout

0

1

binvert

less 3

 
Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b’. 

 

0

1

a

b
result

operation

+ 2

cin

0

1

binvert

less 3

overflow
detection

overflow

set

 
Figure 2: A 1-bit ALU for the most significant bit. 

 


