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ABSTRACT
在過去遊戲體驗中，以身體方式做為操作的遊玩方式，提供
給玩家能直觀地即時操作虛擬角色，獲得沈浸的遊戲體驗，
然而這類的操作方式需要現實中大量的遊玩空間及需花費玩
家多餘的力氣來進行遊玩體驗；相比之下，以手為操作虛擬
角色的方式，提供玩家更精準且低疲勞的遊玩體驗，讓玩家
可以在小範圍空間中能很好操作這些虛擬角色，但該方法相
比身體操作方式缺少許多身體感測機制，而導致較低的遊玩
沈浸感。本篇論文旨在觀察這兩種操作方式間的優缺點與其
適合使用的情境，並結合兩者方法的優勢處來作為一種新的
遊玩操作方式，提供玩家更直覺且更舒適的遊玩體驗。我們
執行一個形成性研究來暸解玩家會在何時、何地去使用者兩
種操作方式，並在該研究結果中得知使用者會偏好使用上半
身姿態與手勢在不同遊戲情境下進行操作。基於該形成性研
究結果，我們進一步執行使用者偏好設計研究，邀請使用者
們來針對現有商業化熱門遊戲中常見的17個遊戲角色動作，
進行手勢與姿態的偏好設計，並選擇共識度最高的手勢與姿
態最為各個動作的代表操作方式。該論文使用商業化技術框
架MediaPipe去偵測使用者姿勢與姿態骨架，並用自己設計的
機器學習演算法進行姿態與姿勢辨識。最後，我們展示三個
遊戲情境來顯示出操偶師系統在未來的可使用情境。

CCS CONCEPTS
• Human-centered computing→ Gestural input.

KEYWORDS
Body Posture, Hand Gesture, Camera system, User-Defined Gesture,
Video Game, Input Techniques
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Figure 1: Puppeteer introduces the concept of combining
hand gestures and upper-body postures to control avatars
actions. Here is an example of the crouch action: (a) hand
gesture (b) upper-body posture, and (c) avatar animation.

1 INTRODUCTION
Gamepad-controlled avatars are often used as the main avatar ma-
nipulation for gaming. However, the limited capabilities of gamed-
controlled manipulation lack intuitive control, which affects play-
ers’ presence, enjoyment, and agency of avatar control in video
games [29]. Besides, the manipulation requires players to hold input
devices during gaming, which restricts the freedom of hand move-
ments to affect the game experience. Body-controlled avatars pro-
vide a more intuitive and free-hand manipulation that allows play-
ers to directly control their avatars in the virtual world through real-
time body-to-body motion mapping, such as Kinect1, Vicon2, Opti-
track3, etc. However, this type of manipulation is not appropriate to
use in scenarios where players are in a narrow space or want to sit
to play games because the manipulation needs more physical effort
and interaction space [17, 19]. On the opposite, finger-controlled
avatars provide dexterous and direct manipulation within a close-
range space where players only use their hands to control avatar
movement, including digital puppetry techniques [4, 12, 17, 23, 38]
and iconic gestures [11, 27, 30, 35]. Although finger-controlled sys-
tems provide fewer sensory cues than body-controlled systems,

1https://en.wikipedia.org/wiki/Kinect
2https://www.vicon.com/
3https://optitrack.com/

2022-07-14 10:04. Page 1 of 1–11.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TAICHI ’22, October 15–16, 2021, Taiwan 洪靖雯,張睿哲,陳宏昇,梁中瀚,詹力韋, and陳炳宇

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

they present less body fatigue and a more convenient method to
explore the virtual environment [14]. The two intuitive manipula-
tions have their advantages and limitations, which motivates us
to consider whether they have appropriate scenarios to represent.
Could we combine the two techniques with their benefits as a new
input technique?

Although previous works demonstrated either body-controlled
or finger-controlled avatars [1, 4, 12, 30], none of them discussed
tradeoffs and user preferences for body-controlled and hand-controlled
manipulation that would significantly affect the perception of game
experience. In response, to understand and compete the advan-
tages of the two manipulations, we conducted a formative study to
know why, when, and how to use body postures or hand gestures
for avatar manipulation in 20 games selected from three top-sell
categories on STEAM4. Through the survey of the 20 games, we
decided to focus on representing human avatars’ motions, and we
further interviewed participants about their preferences for hand-
controlled and body-controlled avatars. According to the result of
the formative study, players use their bodies to represent avatar ac-
tions when the actions are easy to be mimicked by bodies. However,
when players want to sit during gaming to reduce body fatigue,
or the avatar actions are unrealistic and hard to be represented di-
rectly by bodies, they tend to use hands to control their avatars. We
discovered that hand gestures provide an alternative to lower-body
movement when players do not want to move exaggeratedly.

Based on the above results, we proposed Puppeteer, a novel input
system that leverages hand gestures and upper-body postures as
an intuitive manipulation to control avatar actions, which is shown
in Figure 1. Puppeteer consists of a multi-camera system that can
recognize the selected 17 upper-body postures and 17 hand gestures
using our self-trained machine learning model, which achieves an
average of 90% accuracy for upper-body postures and 91% for hand
gestures detection. We performed a formative study investigating
users’ preference between hand-based and body-based input. We
then examined a gesture elicitation study to get gestures/postures
users defined to manipulate avatar actions. Based on the defined
gestures/postures, we collected data to create two datasets, imple-
mented a prototype system for gesture recognition, and developed
three game applications to demonstrate the Puppeteer system. Fi-
nally, we also discussed future applications of Puppeteer that goes
beyond games and current limitations.

In summary, this paper contributes to:

• A formative study to understand the preferences, timings
and reasons to use upper-body postures and hand gestures
to control human avatar.

• A gesture elicitation study to understand the best-suited
upper-body postures and hand gestures of actions in popular
game genres.

• Puppeteer, a multi-camera system that can recognize the
elicited postures and gestures.

• Three game applications to demonstrate the Puppeteer sys-
tem.

4https://store.steampowered.com/

Figure 2: Category of avatar manipulations: The horizontal
axis shows what represents an avatar, such as a body or hand.
The vertical axis shows the type of avatar expressed, such as
an object avatar or human avatar. Our focus is on manipulat-
ing human avatars using hands and upper bodies.

2 RELATEDWORK
Previous works proposed many approaches for avatar motion ma-
nipulations. We divided these approaches into three categories and
discussed as below: Object-Controlled Avatar Manipulation, Body-
Controlled Avatar Manipulation, and Hand-Controlled Avatar Ma-
nipulation.

2.1 Object-Controlled Avatar Manipulation
Input devices are popular in gaming for avatar action control, from
single-button controllers to multi-button keyboards, mouses, and
joysticks. However, the mapping between input devices and vir-
tual avatars is not natural and intuitive, which affects the per-
ception of presence, enjoyment, and embodiment in video games
[29, 31]. Some works discussed more precise sensing tools or tan-
gible user interfaces (TUIs) for accurately manipulating avatar
[5, 7, 10, 15, 39, 42]. In addition, other works leveraged everyday
physical objects (e.g., mobile phones, virtual reality (VR) controllers,
toys) for characters’ 3D animation and moving trajectory in the
virtual world [6, 9, 41] . Nonetheless, these techniques required
built-in sensors or needed users to hold other devices, which de-
creased freedom of hands movement and affected users’ perception
during gaming. In addition, the out-of-bodymapping also decreased
the embodiment of avatars.

2.2 Body-Controlled Avatar Manipulation
The other method to control an avatar’s behavior by user input
is the whole-body tracking system, which provides an intuitive
way for 1-to-1 skeleton mapping between users and avatars. Many
commercial systems for motion capture, such as Kinect, detects
body skeleton and apply them to avatars’ skeleton model; Vicon
and Optitrack use multiple cameras and markers to track users’
movement. For VR devices, HTC VIVE and Oculus Quest use the
head-mounted display (HMD) and controllers to track users’ body
motion in VR. However, such systems require players to entirely
behave with avatar motions, making them need to spend more

2022-07-14 10:04. Page 2 of 1–11.
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effort manipulating avatars, especially for exaggerated actions that
often appear in video games.

Recently, researchers started to discuss how to use body input
techniques to manipulate avatar actions. Some works applied users’
skeleton, which Kinect detected on a virtual object model for users
to make animations [3, 16, 26]. CoolMoves [1] proposed a motion
accentuation method that used a motion capture database to match
and blend a user’s input from limited input cues by current VR
devices into a whole-body avatar motion. BodyAvatar [44] created
a Kinect-based system that allowed users to leverage body postures
to create 3D models as their virtual embodiment and control their
models. You as a Puppet [25] tracked a performer’s body and facial
movement through Kinect and HMD to control a puppet remotely
and got audio feedback from the puppet’s vision for more immer-
sive telepresence in puppet manipulation. Creature Features [28]
focused on non-human character motions from human body input.
Imaginary devices [30] imitated a set of game input devices that al-
lowed users to choose suitable devices for different game scenarios
fast.

2.3 Hand-Controlled Avatar Manipulation
On the other side, previous works explored that users manipulate
virtual avatars with hand-based input techniques. We further dis-
cussed pieces of literature with object avatars and human avatars
manipulated by hand gestures.

2.3.1 Hand-Controlled Object AvatarManipulation. Handytool [27]
used iconic hand gestures to control object avatars for becoming
virtual tools itself that improved the task performance in VR. Hand
Shadow [18, 33–35] reported a method with iconic hand gestures
for controlling animal avatars, used for 3D model animation or
telecommunication scenarios, respectively. Imaginary devices [30]
also proposed a hand gesture to mimic a gun that makes a hand
become the gun object avatar. Recently, Hand Interfaces [24] pro-
posed a new interaction technique in AR/VR focusing on virtual
object imitation, such as having a thumb-up hand gesture to imitate
a joystick.

2.3.2 Hand-Controlled Human Avatar Manipulation. One of the
common hand-based input techniques for human avatar movement
is finger walking. Finger walking in place (FWIP) [14] was the
earliest work to propose the technique that allowed users to slide
on a multi-touch input device for locomotion in a virtual world;
Fingerwalking [19] as a similar work generated full-body animation
through finger walking. Based on the FWIP technique, Ujitoko et
al. [37] provided tactile feedback while users performed finger-
walking to generate an illusionary feeling of the sense of body
ownership of the avatars’ invisible legs. Miniature Haptics [38] also
provided haptic feedback on fingers to generate whole-body scale
haptic illusion as a more practical method for haptic feeling in VR
experience.

Another hand-embodied human avatar method proposes a skele-
ton mapping between a physical hand and a virtual avatar. Luo et
al. [20] and Okada et al. [22] used sensing gloves to track users’
finger motions to animate virtual avatar actions. Huang et al. [12]
proposed a hand-to-body skeleton structure to bind between a hand

and a virtual avatar body for animation; Cheng et al. [4] also demon-
strated a similar skeleton mapping system as Huang et al. [12] to
animate a virtual humanoid avatar.

Some works designed specific hand gestures for avatar motion
manipulation. Tung et al. [36] leveraged user-defined gestures
among hands, rings, and legs for avatar control in smart glasses
scenarios; Zhang et al. [43] also discussed hand gestures for avatar
movement in VR. Mani-Pull-Action [17] and Character Motion Con-
trol Interface [23] provided an interactive motion control similar
to marionettes manipulation that made two hands control avatar
actions for more accurate avatar animations. However, these meth-
ods decrease avatar embodiment due to their out-of-body mapping
to hands, mentioned by Miniature Haptics [38].

Based on our knowledge, only PuppetX [8] proposed a system
that allowed users to use full-body gestures to manipulate avatars
with self-construct modular components, but it did not discuss
tradeoffs and user preferences between hand gestures and body
postures. In this paper, we focus on the body-controlled human
avatar manipulation and the hand-controlled human avatar manip-
ulation, which showed on Figure 2. We proposed Puppeteer, which
combined defined hand gestures and body postures and allowed
users decided when to use hands or bodies to control their avatars
based on their preferences. Puppeteer provides a more intuitive
game input method to increase avatar embodiment during gaming.

3 STUDY I: FORMATIVE STUDY
To understand the preferences, timings, and reasons that users want
to use body postures and hand gestures to control human avatars,
we conducted a formative study. To find common actions that often
appear in video games on the market currently, we selected 20
video games from the top-seller category on the most prominent
digital distribution platform STEAM5, which is based on PuPoP
[32]. First, we performed a survey to search the "video game" key-
word on steam and picked the top 20 games. We discovered that
18 games used human avatars to explore virtual worlds in these
games. The other two games belonged to the digital collectible
card game (DCCG) category, in which players used interfaces to
pick cards without controlling avatars. Besides, 16 games were in
third-person view, where players view their avatars as onlookers,
and four games were first-person view, where players controlled
their avatars directly. Based on the survey result, we decided to
focus on representing human avatars’ motions to apply Puppeteer
to more aspects of games. Notably, the human avatar described in
this paper includes human and humanoid characters, which can
be animated by a human skeleton model. In addition, it was more
precise for users to see the whole-body actions of the avatars and
more accessible for users to design gestures of the actions when
games are third-person view.

Therefore, we reselected the top 20 video games more searched
by the "third-person video games" keyword on steam. These games
include action games, role-playing games (RPG), shooter games,
and adventure games. Two of our authors watched each game’s
trailer and gameplay video and labeled all character actions. Then
We made 20 demonstration videos that contained these labeled ac-
tions. Each demonstration video was less than or near one minute.

5https://store.steampowered.com/search/?filter=topsellers

2022-07-14 10:04. Page 3 of 1–11.
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A total of 85 actions were labeled, of which 19 actions were unique.
Five participants (aged 22 - 26, 3 females) were invited to do the
study. All participants were familiar with playing video games.
Each participant was asked to think about when they preferred to
use body postures or hand gestures to control their avatars, fol-
lowed on ARAnimator [41]. We provided three options (upper-body,
lower-body, hand approach) to invoke participants to think aloud.
They needed to consider factors that might affect performing ges-
tures/postures, like fatigue, ease-to-perform, comfort, goodness,
and intuition. The upper-body and lower-body approaches sepa-
rately include body postures above and below the waist. For the
hand approach, we explained to participants that it includes the
puppetry method, which means seeing hands as a small avatar
and controlling the avatar through fingers and palms, and iconic
gestures, which are metaphors to represent virtual meanings for
avatar motion controls. In addition, we also let participants con-
sider the scenario that fast switches actions in gaming because this
scenario is common in many games, especially in action games.
The participants needed to rank three options for each avatar ac-
tion and explain the reason for the preferences. To provide enough
time for participants, we sent demonstration video links to rewatch
online and gave them one day to think about their gesture/posture
preference on avatar actions. Then participants returned the next
day and explained their preference for labeled actions. The partici-
pants watched 20 videos in order, and we interviewed them with
considerate factors and discussed their ranking lists. The whole
progress of the interview was video recorded. It took about 1 hour
to interview each participant.

Based on the interview result, most participants expressed that
they used their bodies to control avatar actions if the actions can
be directly represented by bodies, especially in games focusing on
storytelling. P2, P3, P4 also mentioned that using body postures
increased immersion in gaming. However, when the participants
found that the avatar’s actions were too exaggerated (e.g., running
in the mountain, rolling over quickly) or unrealistic (e.g., flying in
the sky, stopping in the air) to mimic, or the avatar switched too fast
with multiple actions, they preferred to use their hands to manipu-
late avatar motions. All participants agreed that the hand approach
was easy to perform in gaming with less fatigue, which was appro-
priate to play in gaming for a long time. Additionally, hand gestures
propose an alternative to lower-body motions when players pre-
fer to sit during gaming. Most participants except P2 expressed
that lower-body postures represented limited avatar actions. They
thought lower-body postures were suitable for representing lower-
body actions, which hand gestures can also express. Besides, P4
preferred no leg movement if she sits to play games, and she wants
the least effort for controlling avatars. She also recommended that
other methods can replace the lower-body approach. Based on the
interview result, we decided to remove the lower-body approach
and focus on the hand and the upper-body methods.

4 STUDY II: USER-DEFINED
GESTURES/POSTURES STUDY

To explore how participants define gestures/postures to represent
avatar actions, we performed a user-defined gestures/postures
study, as mainly followed on ARAnimator [41].

4.1 Apparatus and Procedure

Game Scenarios Avatar Actions
Action-Adventure
Game

Climb, Row a Boat, Punch, Drive, Fly,
Open a Door, Crawl

RPG Game Walk, Run, Jump, Ride, Roll, Defend,
Swim

Shooter Game Shoot, Use a Weapon, Crouch
Table 1: The action list of the three game scenarios shown in
the demonstration videos on Study II.

Based on the result of Study I, we implemented three game
scenarios that included the most popular game genres on the sta-
tistical result of the formative study. Three game scenarios are
Action-Adventure Game, RPG Game, and Shooter Game. We bought
the scenarios’ game scenes from Unity Asset Store6, and imple-
mented some character models and action animations using Adobe
Mixamo7. These scenarios included avatar actions labeled from the
formative study, as shown in Table 1. We filtered two uncommon
labeled actions that belonged to multiple keypresses in keyboard
input (e.g., shooting with walking, crouching with walking) and
finally selected 17 unique actions in this study. We recruited new 12
participants (aged 21 - 26, 4 females) to conduct this study. In a simi-
lar procedure to the formative study, the participants were asked to
watch the demonstrations videos containing actions clipped from
the three game scenarios and designed hand gestures and upper-
body postures that best represent each avatar action. To avoid
legacy bias which participants generated because participants were
familiar with traditional game input systems in video games, we
followed production gesture methods [2, 21] and encouraged par-
ticipants to define three hand gestures and three body postures.
Then, the participants selected one gesture/posture that they most
preferred for each action. Each gesture/posture was performed in 5
seconds. The whole defining process was video-recorded for further
result analysis and system implementation. To help the participants
design a unique gesture/posture for each action with enough time,
we provided one day for the participants to go through all demon-
stration videos and think aloud about different gestures/postures
before performing the study. The next day, the participants returned
to perform their designed gestures/postures. Besides, the partici-
pants needed to consider their defined gestures/postures in terms
of goodness, ease-of-perform, intuition, and comfort when they
selected their preferred gestures/postures. The whole study took
about 2.5 hours for each participant.

4.2 Result and Discussion
We collected a total of 1024 action gestures/postures, which in-
cludes 612 (= 17 (actions) × 3 (types of gestures/postures) × 12
(participants)) hand gestures and 612 upper-body postures, and we
isolated totally 408 preferred gestures/postures. Finally, we chose
one representative hand gesture and one upper-body posture for
each action with the largest number selected by the participants,
6https://assetstore.unity.com/
7https://www.mixamo.com/
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Figure 3: The user-defined hand gestures from Study II.

Figure 4: The user-defined upper-body postures from Study II.
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Figure 5: Agreement rates of the user-defined hand gestures
and the upper-body postures for the actions on Study II.

and we reduced the set to 17 hand gestures and 17 upper-body pos-
tures. Figure 3 and Figure 4 showed the selected hand gestures and
upper-body postures. The detailed design meaning of each gesture
and posture was listed in our supplementary materials. To evaluate
the degree of consensus among user-defined gestures/postures, we
calculated the agreement score 𝐴 using the equation of previous
works [40, 41]:

𝐴𝑡 =
∑︁
𝑃𝑖

( |𝑃𝑖 ||𝑃𝑡 |
)2 (1)

where 𝑡 is one of the actions, 𝑃𝑡 is the set of collected ges-
tures/postures for 𝑡 , and 𝑃𝑖 is a subset of identical gesture/posture
from 𝑃𝑡 . The range for 𝐴 is [0,1]. The agreement rates of hand ges-
tures and body postures are shown in Figure 5. For hand gestures,
the agreement rates were from 0.12 (medium agreement, 0.100 <AR
<0.300) to 0.85 (very high agreement, AR >0.500). For body postures,
the agreement rates were from 0.18 (medium agreement, 0.100 <AR
<0.300) to 0.85 (very high agreement, AR >0.500). The mean AR of
hand gestures and body postures were (0.32, 0.40).

Four participants (P3, P9, P10, P11) preferred to use upper-body
postures to control avatar actions that their upper body can repre-
sent. Half of the participants expressed some actions were appro-
priate for upper-body postures (e.g., open a door, row a boat, use a

Figure 6: A system procedure of Puppeteer.

Figure 7: A system setup of Puppeteer. (a) Hand Cam detects
a user’s hand gestures in Hand Zone. (b) Upper-Body Cam
recognizes the user’s upper-body postures in Upper-Body
Zone.

weapon, drive, swim, and punch). However, the participants wanted
to use hand gestures when avatar actions contained lower-body
or whole-body motions, such as walk, run, jump, and crouch. P7
also mentioned that the actions which contained avatars left from
the ground were also proper to represent by hand gestures (e.g.,
fly and roll). These results are consistent with the formative study.
Besides, some gestures/postures were designed similarly (e.g., walk
and run) because such gestures differed only on motion parame-
ters (e.g., speed), which was also found in ARAnimator [41]. Some
hand gestures (climb and swim, fly and drive) only differ from the
hand position on the ground or the air. We will discuss how to
distinguish these similar gestures in the system implementation
section. Overall, participants controlled most avatar actions with
the puppetry method that they saw their upper bodies or hands as
puppets to manipulate avatars’ motions. For example, the partici-
pant used the index finger and the middle finger as the avatar’s legs
and moved the two fingers to represent the avatar’s walking. How-
ever, some gestures/postures were dominant to be chosen because
they were most intuitive to human experiences, such as finger guns,
in which participants made their hands like handguns to represent
the gun action. We listed all design meanings of hand gestures and
upper-body postures in the supplementary materials.

5 PUPPETEER SYSTEM IMPLEMENTATION
Based on the collected virtual avatar actions corresponding to de-
fined hand gestures and upper-body postures, we developed a pro-
totype input system named Puppeteer. Recently, many frameworks
based on machine learning have enabled real-time hand and body
keypoint detection from RGB frames. We chose Google MediaPipe8

8https://google.github.io/mediapipe/
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framework for our gestures/postures keypoint detection. However,
our camera capturing angle and detected targets differ markedly
from those used to train public models, and these frameworks did
not provide satisfying results to our system. We, therefore, develop
our self-defined machine learning method for the specific needs.

The system detection procedure is shown on Figure 6. The par-
ticipant inputs a hand gesture or an upper-body posture into the
recognition system, and the system distinguishes the input ges-
ture/posture and recognizes it as 1 of 17 avatar actions. Then, the
system performs the corresponding avatar animation based on the
action recognition. The recognition system was run in Python on a
PC desktop, and avatar animations were implemented in Unity3D
and Maximo. To decrease the confusion in distinguishing between
hand gestures and upper-body postures, we designed two detection
zone to separately detect hand and upper-body input, which were
recorded by two cameras and shown in Figure 7. The camera for
the hand zone (called Hand Cam) was placed on the top of a desk-
top screen, and one for the upper-body zone (called Upper-Body
Cam) was placed on a tripod. The system first identifies whether
participants input hand gestures. If the system gets the detection
data from Hand Cam, it automatically changes to the hand ges-
ture recognition mode and searches the gestures in the self-trained
dataset. If the system does not get the hand detection data or can
not recognize the input in the hand gestures dataset, it switches to
recognize upper-body postures.

We discussed the detail of the gesture/posture recognition below.

5.1 Data Collection
To collect the selected hand gestures and upper-body postures for
the self-trained datasets, we invited 12 participants to perform the
gestures and postures. The participant was asked to perform ges-
tures/postures like the demonstration videos shown on the screen.
Each gesture/posture was repeated five times by each participant.
We recorded the performed gestures and postures with Hand Cam
and Upper-Body Cam. The two cameras were both Logitech 4K
Webcam. We developed a simple graphic user interface (GUI) to
show the views from the camera’s recording. The GUI checked and
stored the recorded videos to see if the performed gestures/postures
keypoints could be detected correctly by the MediePipe framework.
We created two datasets for collected hand gestures and upper-body
postures separately. The total number of videos for hand gestures is
1020 (= 12 (users) × 17 (types of actions) × 5 (repetitions)), and the
one for body postures is also 1020. We set the frame rate as 10fps,
so there are 50 frames for each video.

5.2 Gesture/Posture Classification
Then, we applied the MediaPipe framework to real-time get hand
and upper body keypoint detection on the videos. The MediaPipe
API provides 21 keypoints for a hand and 25 keypoints for the
upper body, and each keypoint contained position data (x,y,z.) We
used these keypoints to generate three types of feature vectors
for the recognition: (1) Angles – the angles between fingers and
a palm, (2) Distances – the distances between two fingers, and
(3) Displacements – the displacements between the x/y position
of the current frame and that of the last frame. These features
can know the degrees of finger/upper-body rotation, translation,

and movement path of finger/upper-body motions. For each frame,
the feature numbers of hand gestures are 73 (= 15 (angles) + 16
(distances) + 42 (displacements)) dimensions, and that of upper-body
postures are 78 (= 12 (angels) + 18 (distances) + 48 (displacements))
dimensions. Because the numbers of the collected videos are few
for recognition, we augmented our videos by resorting to frames’
orders in one video. So we augmented videos more than 24 times,
and the total number of videos for hand gestures and upper-body
postures was 24,480 (= 1020 (numbers of original videos) × 24
(times)).

We defined 17 clusters for the avatar actions and labeled the
collected videos to these clusters. We used a principal component
analysis (PCA) reconstruction-error-based detector [13] as loss
function to classify the gestures/postures to the action clusters.
When the participant inputs a new gesture/posture, the system will
calculate the distance between the new gesture and the 17 action
clusters’ centroids. The system recognizes an input gesture/posture
belonging to the action with the lowest distance between them.
Based on the optimization, we finally chose 200 feature dimensions
for hand gestures recognition and 50 feature dimension for upper-
body postures recognition.

5.3 System Evaluation
We performed a 3-fold cross-validation to evaluate the trained
models. We randomly split the data from the 12 participants into
three subsets, in which two for the training model and one for
validating. Then the three subsets were switched as training data
and validation data. Finally, we calculated the average accuracy of
hand gestures is 90%, and upper-body postures detection is 91%.
The accuracies of each action for hand gestures and upper-body
postures are shown in confusion matrices (Figure 8).

The system can correctly recognize most actions for hand ges-
tures above 85% recognition accuracy. Use a weapon, climb, open
a door, and swim actions have the best accuracy (100%). Some ac-
tions are confused by the recognition, such as defend (74.1%) is
recognized as use a weapon, and drive (70.7%) is identified as punch
and climb. For the confusion of defend, it is because this action are
similar as use a weapon in the angle and the distance features, which
leads to defend’s wrong identification to use a weapon. For drive,
the noticeable features are the movement of a thumb and an index
finger, which is the same as punch and climb, and that causes a false
distinction between the two actions.

For the upper-body postures recognition, most actions are dis-
cernible above 91% accuracy, especially jump, roll, shoot, and use
a weapon have the best accuracy (100%). There are four pairs of
actions are confused for the recognition: (1) walk (72.9%) versus run
and crouch, (2) defend (69.5%) versus punch, (3) row a boat (78.0%)
versus fly (71.2%), and (4) crawl (69.5%) versus swim and walk. For
the first pair, because of the occlusion of hands detection, it makes
walk easily to be recognized from other actions which only have
differences in hands movement, such as run and crouch. For the
second pair, the most obvious difference is the left arms movement,
which causes the false identification between defend and punch. For
the third pair, the participants do not move their torsos, and two
hands are mainly beside torsos, so most angles features are the same
in the two actions. Their only differences are hands’ movements,

2022-07-14 10:04. Page 7 of 1–11.
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Figure 8: (Left) The confusion matrix of the hand gestures. (Right) The confusion matrix of upper-body postures.

which causes recognition confusion. For the last pair, crawl only
differs at arms’ movement to swim and hands’ position to walk,
which leads to the classification error.

In addition to the above discussion, some false recognitions are
caused by individual behavior differences in performing the 17
actions. Another reason is that our collected numbers of data are
still few for recognition. Improving the collected data will decrease
the distinguish error of the system. Overall, the current accuracy
of the system is sufficient for our demonstration applications.

6 APPLICATION

Game Scenarios Avatar Actions
Action-Adventure
Game

Walk, Run, Jump, Climb, Row a Boat,
Punch, Drive, Fly, Open a Door, Crawl,
Swim

RPG Game Walk, Run, Jump, Ride, Roll, Shoot, De-
fend, Use a Weapon, Swim

Shooter Game Walk, Run, Jump, Shoot, Use a Weapon,
Crouch

Table 2: The action list of the three game scenarios shown in
the application.

Followed on Study II, we created three game applications to
demonstrate Puppeteer interaction, including three popular game

Avatar Manipulation Avatar Actions
Hand Gestures Walk, Run, Jump, Roll, Crouch, Fly,

Crawl
Upper-Body Postures Ride, Shoot, Defend, Use a Weapon,

Climb, Row a Boat, Punch, Drive, Open
a Door, Swim

Table 3: The action list of using hand gestures and upper-
body postures in the three scenarios.

genres – Action-Adventure Game, RPG Game and Shooter Game,
as shown in 9. All actions in the three applications are shown in
Table 2. The three games have some different actions for players to
experience. The shooter game focuses on defeating enemies using
guns and weapons. The adventure-action game and the RPG game
provide more actions than the shooter game and focus on exploring
the virtual environment.

According to the users’ feedback in the gesture elicitation study,
we designed the actions controlled by the hand gestures or upper-
body postures and listed in Table 3. Players switch hand-controlled
or upper-body-controlled manipulations while experiencing the
applications. We described the detailed procedures of the three
applications below. Players can perform walk, run and jump at
any time because these actions are primary movement control and
follow the hints to conduct the remaining actions during gaming.

2022-07-14 10:04. Page 8 of 1–11.
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Figure 9: Three applications demonstrate usage of Puppeteer:
Action-Adventure Game (upper), RPG Game (middle), and
Shooter Game (bottom).

6.0.1 Action-Adventure Game. For the action-adventure game, eleven
actions were experienced by players. The player controls a hu-
manoid character to explore the virtual world. Each character ini-
tially has five health points. If the health points are empty, the game
will end, and the players have to restart the game. First, the player
is at the bottom of a valley and has to climb a mountain. When they
achieve the top of the mountain, they find the bridge to the other
peak broken, so they have to fly over mountains. However, there
are some monsters on the other mountain, so the player starts a
fight and maybe attacked by the monsters to decrease their health
points. After they successfully beat the enemies, they continue on
the adventure and find a building, opening a door and receiving
some food to recover their health points. Next, they leave the build-
ing and drive a car down the mountain. They encounter a river to
prevent their movement, so they change to row a boat to cross over
the river. When they arrive at the edge of the river, they find a low
height of rock cave, so they crawl over rock obstacles and finally
find a box to get a treasure.

6.0.2 RPG Game. There are nine actions were experienced in the
RPG game. The player becomes a knight, and their goals are to fight
against a daemon and save the world. In the beginning, the player
stands in a grassland. They walk in the prairie and find an ostrich,
so they put on and ride the ostrich. Then, they encounter a barrier
that blocks their way. They have to use a bow and shoot arrows
to destroy the barrier. After they succeed, they meet a large lake
and swim to cross over. When they arrive on the edge of the lake,
the daemon appears. The player needs to use their swords to fight
the enemy, a shield to defend against attacks, and a fast rollover to
dodge attacks. After a fight, the player finally defeats the daemon
and wins the game.

6.0.3 Shooter Game. In the shooter game, the player manipulates a
soldier and needs to pass five levels to arrive at the destination. Some
enemies and obstacles appear on the road to the destination, and
they have to fight. The players performed six actions in the game.
Automatic doors appear between two levels. The player moves to
the next level and crouches down to get through a passage. Then, an
obstacle obstructs the road, so the player uses a dagger to clean up
the barrier. On some levels, there are enemies to attack the player.
The player has to use their dagger to fight or a gun to shoot the
enemies. After beating the enemies and successfully arriving at the
last level, they win the game.

Each application contains the actions appropriate to represent
by hand gestures and upper-body postures. Players will frequently
switch between gestures and postures during gaming and experi-
ence the combination of the two manipulations.

7 LIMITATION AND FUTUREWORK
Although the system showed high accuracy for the gesture/posture
recognition, the system evaluation only validates collected recorded
data in a static setting. We need an extra study to observe the
actual situation when participants play games and input many
hand gestures and upper-body postures into the system. Besides,
we separately detected hand gestures and upper-body postures
for the system to recognize them easily. In the future, we want
to improve our recognition algorithm and make the Puppeteer
system only need one camera to detect all gestures and postures
and successfully distinguish the two input techniques.

This paper focused on combining hand and upper-body input
to control avatar actions. We implemented a prototype system to
demonstrate this concept. We plan to extend our datasets to collect
more hand gestures and upper-body postures for avatar control
in future work. Besides, Puppeteer can be explored to apply in
situations where it is not convenient to use their legs, such as
people have legs hurt or playing games on mobile transportation.
Puppeteer may provide a practical way for avatar control in the
virtual environment in real life.

8 CONCLUSION
We present Puppeteer, a concept that combines hand gestures and
upper-body postures to provide a new game input interaction by
multiple cameras detection. We built a prototype using two cameras
mounted on a screen and a tripod separately. We performed the
MediaPipe framework for keypoint detection and the self-trained
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models for gesture/posture recognition. Based on the system eval-
uation, the Puppeteer achieves an average of 90% accuracy for
upper-body postures and 91% for hand gestures detection. Three
demonstration applications enabled by Puppeteer allows partici-
pants to switch to input hand gestures and upper-body postures
to manipulate their virtual avatars. We believe Puppeteer provides
a new avatar manipulation for convenient and easy interaction of
hands and upper bodies in video games.
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