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Abstract
We present a method for progressive deforming meshes. Most existing mesh decimation methods focus on static
meshes. However, there are more and more animation data today, and itis important to address the problem of
simplifying deforming meshes. Our method is based on deformation oriented decimation (DOD) error metric
and dynamic connectivity updating (DCU) algorithm. Deformation oriented decimation extends the deformation
sensitivity decimation (DSD) error metric by augmenting an additional term to model the distortion introduced by
deformation. This new metric preserves not only geometric features but also areas with large deformation. Using
this metric, a static reference connectivity is extracted for the whole animation. Dynamic connectivity updating
algorithm utilizes vertex trees to further reduce geometric distortion by allowingthe connectivity to change. Tem-
poral coherence in the dynamic connectivity between frames is achieved by penalizing large deviations from the
reference connectivity. The combination of DOD and DCU demonstrates better simpli�cation and triangulation
performance than previous methods for deforming mesh simpli�cation.

1. Introduction

Today, more and more high-resolution animated 3D mod-
els, also called deforming meshes or time-varying surfaces,
are widely used in many applications, such as games and
movies. High-resolution models are required to present de-
tails and �ne structures. However, some details might be un-
necessary especially when viewing from a distance. Mesh
simpli�cation is a process of eliminating such unnecessary
or redundant details from high-resolution 3D models by re-
moving vertices, edges, or faces. By repeatedly applying
this process, an animated model can be converted into a set
of progressive mesh representing a sequence of 3D meshes
with continuous level-of-details (LOD). Due to the removal
of some primitives, this process usually distorts the original
model. Hence, various metrics have been proposed to mea-
sure the deviation of the simpli�ed model from the original
one and many mesh simpli�cation methods have been de-
veloped to minimize these metrics. However, most of these
methods are designed for simplifying static meshes, but not
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time-varying meshes such animated 3D models or 3D meta-
morphosis. In this paper, we propose a new method for gen-
erating progressive deforming meshes.

To simplify deforming meshes, some previous methods
focus on preserving the static connectivity, i.e., the connec-
tivity of the deforming meshes remains unchanged for all
frames. In these approaches, the mesh simpli�cation process
is only applied to one model, which aggregated features of
all frames as a meta-mesh. However, such adaptations are
inadequate and the results are often not satisfactory since
they do not take time-varying deformation into considera-
tion. Figure1 shows the last frame of a simpli�ed 3D mor-
phing sequence, in which a horse is morphed to a man. The
results of using previous approaches (Figure1(c, d, e)) have
obvious distortion in the hand area. It is because that the fea-
tures of a horse are not necessarily the features of a man and
our method has no such problem (Figure1(f)).

On contrast to early work with static connectivity, a few
recent methods change the connectivity adaptively and dy-
namically to improve the quality for each simpli�ed mesh of
the simpli�ed deforming meshes. These methods start with
the mesh of the �rst frame, and incrementally update the
connectivity so that the mesh in the next frame is well ap-
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(a) original mesh (b) independent QEM (c) �rst-frame QEM (d) DSD (e) Kircher and Garland (f) Our method

Figure 1: The last frame of a simpli�ed 3D morphing sequence. (a) The original model. (b) The result of an independent QEM
approach. (c) The result of a static connectivity approach from the �rstframe. (d) The result of DSD. (e) The result of Kircher
and Garland's method [KG05]. (f) Our result. Although independent QEM is the best approach to preserve the features, it
has popping artifacts in animation. The result of our method preserves more details than pervious methods while maintaining
temporal coherency of mesh connectivity.

proximated. In order to generate good simpli�ed deforming
meshes, a great amount of updates is often inevitable, and
hence resulting in popping artifacts. On the other hand, if
consistency constraints on the connectivity of meshes from
frame to frame are imposed, the results have bettertemporal
coherence. However, geometric errors may be propagated
and accumulated with these approaches. The fundamental
problem is that the model in either the �rst or arbitrary frame
does not necessarily represent a good compromise between
the individual mesh distortion and connectivity updates for
in-between meshes.

Our goal isto minimize mesh distortion while maximiz-
ing temporal coherencefor deforming mesh decimation. In
other words, our method attempts to �nd a sequence of
meshes which well approximate the original meshes and
the amount of frame-to-frame connectivity updates is min-
imized. We �rst introduce a deformation oriented decima-
tion (DOD) metric to improve static connectivity approaches
(Section3.1). In addition to the geometric error metric, DOD
metric uses the �rst order derivatives of the edge lengthes to
measure the deformation degree of deforming meshes. This
DOD scheme is used to obtain the initial progressive deform-
ing meshes with static connectivity. Next, we introduce a dy-
namic connectivity updating (DCU) method which utilizes
vertex trees to further reduce geometric distortion by altering
connectivity of meshes (Section3.2). Temporal coherence of
connectivity between frames is achieved by penalizing large
deviations from a reference connectivity. Results (Section4)
shows that the proposed method has better performance than
previous methods for deforming mesh simpli�cation.

2. Related work

In this section, we review related work in three groups: mul-
tiresolution meshes, simpli�cation of deforming meshes and
compression of deforming meshes.

2.1. Multiresolution meshes

There are a plethora of papers on generating multi-resolution
meshes, notably through re-meshing and simpli�cation. Re-
meshing approaches [CSAD04,EDD� 95] attempt to obtain
a good re-sampling over the original mesh surface. These
methods can not be directly applied to time-varying sur-
faces, since they do not take the temporal coherence into
account. Simpli�cation techniques choose a primitive caus-
ing the least distortion measured by some metrics, and con-
duct primitive elimination operations such as vertex-removal
[SZL92], vertex-clustering [CVM� 96], and edge-collapsing
[GH97,Hop96,LT98]. For edge-collapsing architecture, the
sequence of simpli�cation process forms a tree structure,
called vertex tree. A vertex tree can be used for selective re-
�nement or coarsening for arbitrary view-dependent multi-
resolution model [XV96, Hop97, LE97]. Traditional mesh
simpli�cation algorithms work �ne on a single static model.
However, as re-meshing, it does not consider temporal co-
herence and hence can not be directly used for deforming
meshes.

2.2. Simpli�cation of deforming meshes

Recently, some mesh simpli�cation methods have been pro-
posed for deforming meshes. Mohr and Gleicher [MG03]
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proposed a deformation sensitive decimation (DSD) method,
which adapts the QEM [GH97] algorithm, to construct a
meta-mesh by summing the quadric errors incurred by all
frames. The meta-mesh uses the aggregated error as the
guide to �nd an optimal primitive elimination sequence
to simplify itself. DeCoro and Rusinkiewicz [DR05] pro-
posed a method of weighting possible con�guration of poses
with probabilities. With articulated meshes, skeleton trans-
formation is incorporated into standard QEM algorithm, and
users must specify the probability distribution for each joint.
Shamir and Pascucci [SP01] also used the QEM algorithm as
a base simpli�cation module. By extracting high frequency
transformation, simpli�cation is applied to the base mesh
and the results are acquired by an inverse transformation on
the simpli�ed base mesh.

Keeping static connectivity for all frames produces a mod-
erate approximation. With this adaptation, a very simple data
structure is used for the representation and the quality of the
simpli�ed animation is satisfactory in general. However, be-
cause this approach makes a compromise among all frames,
it may prefer to preserve a less prominent feature over a more
important feature in some frame because the less prominent
feature is more important in other frames. This is especially
common in 3D metamorphosis animations. Hence, impor-
tant features at certain frames could be sacri�ced by this
compromise. The phenomena can be seen in Figure1.

Since methods with static connectivity can not preserve
all features when more primitives are removed, an alternative
way is to change the connectivity dynamically during the
animation. Shamiret al. [SBP00,SP01] designed a scheme
for simplifying deforming meshes while changing the con-
nectivity dynamically. In their method, Time-dependent Di-
rected Acyclic Graph (TDAG) is introduced by merging
each individual simpli�ed model of each frame into a uni-
�ed graph. TDAG is a data structure that stores the life time
of a vertex, which is queried for the connectivity updating.

Kircher and Garland [KG05] used edge-swap opera-
tions to dynamically update the connectivity. The simpli�ed
model for the next frame is obtained by a sequence of edge-
swap operations from the simpli�ed model of the current
frame. Inadequate error propagation found in Shamir's ap-
proach [SBP00] is overcome by applying only valid andben-
e�cial edge-swap operations. However, for extremely sim-
pli�ed deforming meshes, there might be a huge amount of
connectivity updates which cause popping artifacts.

2.3. Compression of deforming meshes

Another way to reduce the size of the sequence of deform-
ing meshes is through data compression. Lengyel [Len99]
proposed a compression method for deforming meshes by
decomposing the time-varying geometries toSVG matri-
ces. Alexa and Müller [AM00] used Singular Value De-
composition (SVD) to �nd the principle components of de-
forming meshes. Then, the lossless or lossy compression

of the deforming meshes can be controlled by either pre-
serving all components or discarding some less important
components. Ibarria and Rossignac [IR03] showed how to
use predictors, ELP and Replica, to compress deforming
meshes. As an extension of the geometry image [GGH02],
Brice�no et al. [BSM� 03] used the RGB channels as the
XYZ coordinates to compress the time-varying deforming
meshes as compressing a video sequence. Hence, many tech-
niques for video compression could be applied. James and
Twigg [JT05] developed a method to automatically �nd the
bones and vertex weights which are used for ef�cient hard-
ware rendering and excellent mesh data compression.

3. Algorithm

Our algorithm consists of two components:Deformation
Oriented Decimation (DOD)andDynamic Connectivity Up-
dating (DCU). In this section, we �rst describe our DOD
method for deforming mesh decimation with a static connec-
tivity. Next, we use DCU algorithm to reduce errors by al-
lowing adaptive connectivity while maintaining temporal co-
herence. Finally, some implementation details are discussed.

3.1. Deformation oriented decimation

Our DOD algorithm is based on Garland and Heckbert's
QSlim algorithm which has been proven ef�cient and ef-
fective for static mesh decimation. QSlim iteratively se-
lects an edge(vi ;v j ) with the minimum contraction cost to
collapse and replace this edge with a new vertexu which
minimizes the contraction cost. To measure the contraction
cost for an edge, Qslim utilizes the quadratic error metric
(QEM) [GH97], which measures the total squared distance
of a vertex to the two sets of planesP(vi) andP(v j ) adjacent
to vi andv j respectively. A plane can be represented with a
4D vectorp, consisting of the plane normal and the distance
to the origin. Hence, the squared distance of a vertexv to a
planep equalsvT(ppT)v. The QEM error functionDi j for a
vertexv to replace the edge(vi ;v j ) is

Di j (v) = å
p2 P(vi )

vT(ppT)v + å
p2 P(v j )

vT(ppT)v

= vTQiv + vTQ jv: (1)

Garland also suggests using an area-weighted quadric error
metric for better results [Gar99] and de�nes the QEM error
function as:

Di j (v) = vT(wiQi + w jQ j )v = vTQi j v; (2)

wherewi is the total area of triangles adjacent tovi andw j
is de�ned similarly. Hence, the QEM costQEMi j for con-
tracting an edge(vi ;v j ) is de�ned asDi j (ui j ), in which ui j
is the vertex minimizingDi j (v). QSlim simpli�es a mesh
by iteratively �nding the edge(vi ;v j ) with the minimum
QEMi j , performing an edge-collapse operation to replace
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(vi ;v j ) with a new vertexui j and updating the edge con-
traction costs related toui j until the desired vertex countm
is reached.

To extend QEM to handle deforming meshes, a naïve way
is to use QEM to obtain an edge-collapse sequence for the
�rst frame, and then apply this sequence to all frames. Since
all frames use the same edge-collapse sequence, they have
the same connectivity. The disadvantage of this approach is
obvious. Features of other frames might be removed if they
are not features in the �rst frame. The deformation sensi-
tive decimation (DSD) algorithm addresses this problem by
summing QEM costs across all frames [MG03]. The DSD
contraction cost for an edge(vi ;v j ) is de�ned as

DSDi j =
f

å
t= 1

QEMt
i j =

f

å
t= 1

ut
i j

T
Qt

i j u
t
i j ; (3)

where ut
i j minimizes the QEM costQEMt

i j for the edge
(vi ;v j ) at framet. Hence, DSD tends to preserve edges that
are geometric features more often in the animation.

The QEM error metrics used by DSD only concerns with
features of geometry in the spatial domain but not features of
deformation in the temporal domain. As a result, geometric
features are often well preserved but regions with high defor-
mation may not. To address DSD's ignorance to deformation
information, we propose a deformation oriented decimation
(DOD) metric which incorporates a deformation cost into
the DSD metric.

We design our deformation costxi j so that an edge is less
likely to be contracted if it has larger deformation and be-
longs to deformation areas more often. We measure the de-
formation of an edge by its average edge length change. The
average edge length change for an edge(vi ;v j ) is de�ned as

Dl i j =
f � 1

å
t= 1

Dl ti j ; (4)

where Dl ti j = jl t+ 1
i j � l ti j j is the edge length change from

framet to t + 1 andl ti j is the edge length for the edge(vi ;v j )
at framet. An edge with largerDl i j implies that this edge de-
forms more often in the animation. Therefore, if we contract
it, then the deformation performed by this edge will be lost.
Hence, we should prefer to contract edges with smallerDl i j
�rst.

To be consistent with area-weighted QEM, we assign
higher weights to the edges belonging to the triangles of
larger areas. Hence, we use the average areaAi j as the
weight,

Ai j =
f

å
t= 1

At
i j ; (5)

whereAt
i j is the sum of areas of the two triangles sharing

edge(vi ;v j ) at framet. Thus, we de�ne the deformation cost

Figure 2: The simpli�ed walking dog animation. The top row
shows the simpli�ed mesh with our DOD method. The bot-
tom row is the result using the DSD method. The highlighted
area demonstrates that our DOD method preserves more tri-
angles on the area having more deformation around dog's
neck.

xi j for an edge(vi ;v j ) as follows:

xi j = wi j � Ai j � (Dl i j )
2; (6)

wherewi j is another weight de�ned as

wi j =
maxt Dl ti j � Dl i j

q
1

f � 1 å
f � 1
t= 1 (Dl ti j � Dl i j )2

: (7)

The denominator of the above equation is the standard devi-
ation of length changes. This weight represents the normal-
ized maximum deformation and helps to preserve the edge
with irregular and sudden large deformation. The introduc-
tion of this weight is to re�ect the fact that we usually pay
more attention to unexpected and sudden deformation.

Finally, We de�ne the DOD error metric for contracting
an edge(vi ;v j ) as the sum of its DSD costDSDi j and its
associated deformation costxi j :

DODi j = DSDi j + xi j : (8)

The decimation process is similar to DSD algorithm except
that DOD metrics are used instead. Once the edge(vi ;v j )
has been selected to be contracted, the new vertexut

i j is
found using the same approach as QEM to minimize geo-
metric error for every framet.

QEM measures area-weighted geometric distortions
while the deformation cost measures area-weighted defor-
mation amount in the animation. Hence, QEM preserves ge-
ometric features (DSDi j ) while the deformation cost (xi j )
preserves highly deformed areas, and the combination of
the two terms gives simpli�cation that preserves both spatial
and temporal features simultaneously. Note that our defor-
mation cost (Equation6) has a consistent form with QEM
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cost. Hence. both costs have similar scales and the relative
weight between them is set to 1 as shown in Equation8.

Figures2 show comparisons of our DOD method and the
DSD method for a walking dog animation. In this animation,
the area around dog's neck has more deformation and needs
more triangles to represent it faithfully. Our DOD method
does preserve more necessary connectivity than the DSD
method.

3.2. Dynamic connectivity updating

The DOD algorithm in the previous section simpli�es a de-
forming mesh with static connectivity. Hence, only the ver-
tex positions can be changed across frames but not connec-
tivity. For skinning animations, it is typically suf�cient to
use a �xed static connectivity. However, for animations with
extremely non-rigid deformation, such as 3D metamorpho-
sis animations, decimation using static connectivity is often
inappropriate. In 3D metamorphosis, a source mesh is trans-
formed into a target mesh. Both meshes are usually very dif-
ferent and the features of these two meshes are often located
at different places. Hence, a static connectivity often fails to
capture features across frames. For this situation, adaptive
connectivity is preferred. However, at the same time, we do
not want to have frequent connectivity change which might
incur popping artifacts. To cope with the problem, the idea
is to minimize the geometric error while maintaining smooth
temporal connectivity changes.

The edge-collapse operations in the previous section im-
plicitly form a binary tree structure since each edge-collapse
operation merges two verticesvi , v j into a new vertexui j .
Hence, we can record the sequence of edge collapses to con-
struct a tree calledvertex tree. Figure3 gives an example of
vertex tree. In a vertex tree, all leaf nodes together represents
the full-resolution model. Any cut through the intermediate
nodes forms a mesh at a speci�c resolution. We call such a
cut vertex front, as illustrated in Figure3. Hence, a vertex
front F is a set of nodesn of the vertex tree. For the static
mesh decimation problem, we want to �nd a vertex front
of sizem with the minimum geometric error. Hence, we can
formulate the mesh decimation problem as the following op-
timization problem:

min
F2 F m

å
n2 F

h(n); (9)

whereF m is the set of all possible vertex fronts whose size
arem andh(n) is the cost associated with the noden, i.e., ,
the contraction cost for the edge collapse to form the vertex
corresponding ton.

To extend the above optimization problem to handle an
animation sequence, independent QEM approach solves the
optimization for each frame individually without consider-
ing the temporal coherence in connectivity. This strategy
however causes popping artifacts and many connectivity up-
dates. As stated earlier, our goal is to minimize geometric
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Figure 3: Illustration of the vertex tree adopt from Hoppe's
paper [Hop97]. The roots of the vertex forest collectively
represent a base mesh. Any cut through the intermediate
nodes forms a decimated mesh.

Frame t Frame t+1 Updating Records

Initial Vertex Front

Cost Minimized
Vertex Front Non-Changing

Connectivity

Figure 4: Vertex front transformed from frame t to frame
t + 1. Because our method seeks for a different vertex front
for each frame, the correspondence must be built such that
we can update the connectivity. On the right most, two por-
tions are computed: non-changing connectivity and neces-
sary updating records.

distortion while maintaining the temporal coherence. Thus,
given a distance functionD(F1;F2) that measures connec-
tivity discrepancy between two frames, we attempt to �nd a
sequence of meshes with low geometric distortion as well as
low connectivity discrepancy between consecutive frames.
This problem can then be formulated as an optimization
problem:

min
F1;:::;F f 2 F m

 
f

å
t= 1

å
n2 Ft

h(n) + k
f � 1

å
t= 1

D(Ft ;Ft+ 1)

!

; (10)

wherek is a user-speci�ed constant to control the degree of
connectivity smoothness between consecutive frames.

The distance functionD(F1;F2) is de�ned as what up-
dating is necessary to transform from the vertex frontF1 to
the vertex frontF2. Updating is composed of edge collapses
and vertex splits, as illustrated in Figure4. We �rst de�ne
the distanceD(n;F2) from a noden of F1 to the vertex front
F2 as the quadratic height difference in the vertex tree from
n to n� ; here,n� is a node ofF2, can reachn by edge col-
lapses or vertex splits, and has the maximal height difference
to n in the vertex tree. The quadratic term prevents the solu-
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Figure 5: A 50-framewaveanimation spreading out from the center to the boundary. Top: The original sequence with 10,210
vertices and 20,000 faces. Bottom: 2,040-vertices and 3,982-faces approximation.

tion from being overly coarsened or re�ned at a certain lo-
cation of the mesh. Finally, the distanceD(F1;F2) is de�ned
aså n2 F1

D(n;F2).

However, the optimization de�ned in Equation10 is a
huge combinatorial optimization problem. We had attempted
to solve it by a genetic algorithm but did not have satisfac-
tory results. It is because solutions often get stuck in local
minimums. Hence, we simplify Equation10 and optimize
the approximated problem instead. The idea is to �rst �nd a
reference connectivity represented by a vertex frontF as the
initial connectivity for all frames. Each frame is then opti-
mized separately by alteringF to further reduce geometric
error. However, to maintain temporal coherence, we do not
like a vertex front too far away fromF. Thus, we formulate
the approximated minimization problem as:

min
F2 F m

 

å
n2 F

h(n) + k� D(F;F)

!

: (11)

For this reduced optimization, we �rst perform DOD algo-
rithm to obtain the optimal vertex frontF and set up a vertex
tree structure. For each framet, we generate a vertex tree
with the tree structure that DOD algorithm builds. However,
the cost associated with each node of the tree is calculated
using QEM. That is, the collapse sequence is universally de-
termined by DOD, but the costs are calculated individually
for each frame's own vertex tree using QEM. After build-
ing the vertex tree for each frame, the optimal vertex front
is found using a greedy method. Although our algorithm is
only suboptimal, it works very well in practice and gives bet-
ter results than previous methods.

An alternative approximate solution to Equation10would
be to solve for the �rst frame by minimize geometric cost
and to use the result as the reference connectivity to opti-
mize for the next frame. Hence, for each frame, we mini-
mize the geometric distortion and the connectivity discrep-
ancy from the previous frame. Similar to Kircher and Gar-

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Frame

N
um

be
r 

of
 U

pd
at

es

k = 0

k = 0.25

k = 0.5

k = 1

k = 2

k = Inf

0

50

100

150

200

k = 0 k = 0.125 k = 0.25 k = 0.5 k = 1 k = 2 k = 4 k = 8

Choice of k

N
um

be
r 

o
f U

pd
a

te
s

Figure 6: The effects of different k for the spreading wave
animation using the DOD+DCU approach. Top: The num-
ber of updates in each frame at different k. Middle: The av-
erage number of updates for every doubling k. Bottom: The
illustration of the connectivity changes from frame to frame.

land's method [KG05], this strategy does not use the infor-
mation of the entire sequence and has similar disadvantages.

The coef�cient k in Equation11 controls the degree of
temporal smoothness; largerk gives a solution closer to
DOD and smallerk gives a solution closer to QEM (not
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Figure 7: A horse-gallopanimation with 48 frames. Top: The original animation with 8,431 vertices and16,843 faces. Bottom:
800-vertices and 1,588-faces approximation.
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Figure 8: Comparisons of independent QEM, �rst-frame
QEM, DSD, and DOD for an extreme simpli�cation for the
horse-gallop animation.

the same QEM because the structure of the vertex tree is
from DOD but the node costs are from QEM). We use the
wave spreading example in Figure5 to illustrate the impact
of k. Figure6 shows the relationship between the choice of
k and the number of average connectivity updates. The re-
sult shows that the relationship is approximately linear with
halving or doublingk. This property holds for all examples
we have tested.

3.3. Implementation

Our algorithm can be summarized into the following steps:

1. Use DOD to generate a sequence of edge-collapse opera-
tions, build the structure of the vertex trees and create the
initial vertex front.

2. For each frame, build the vertex trees using DOD's struc-
ture and �ll in the cost for each node using QEM's edge
contraction cost.

3. Modify the initial vertex front for each frame to minimize
Equation11.

For Step 1, we modify QSlim 2.1 to incorporate the DOD
metric and build the vertex trees. For each edge, we record
its length and the areas of the two triangles sharing it. Then,
we perform the following procedure:

� Compute the DOD cost for every edge, and insert these
edges into a priority queue.

(a) original mesh

(b) simpli�ed mesh using DOD

(c) simpli�ed mesh using DSD

Figure 9: The tail part of the simpli�ed horse animationin
Figure7, in which the tail keeps swinging up and down. Our
DOD method gives better triangulation on the tail than the
DSD method.

� Iteratively select and contract an edge with the least
DOD cost, update every frame, evaluate the new DOD
cost, and insert these new edges back to the priority
queue.

� Go to the previous step until reaching the base mesh.

At this point, we have a sequence of edge-collapses which
can be used to build the vertex tree and compute the initial
vertex front.

For Step 2, conceptually, we have to calculate the geo-
metric cost for every node of the vertex tree for each frame.
However, every edge-collapse operation in Step 1 has actu-
ally already recorded such information.

For Step 3, we want to modify the vertex front for each
frame to minimize Equation11. Similar to Hoppe's solu-
tion [Hop96], we use a priority queue to minimize the cost
of vertex front modi�cation. It dramatically speeds up our
optimization.
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Figure 10: A horse-to-manmorphing animation with 200 frames. Top: The original sequence. Middle:3,200-vertices approxi-
mation. Bottom: 800-vertices approximation.
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Figure 11: Comparisons of geometric errors for the horse-
to-man morphing sequence. The average geometric error
is 2.610 for Kircher and Garland,2.626 for DSD,2.617 for
DOD, and 2.433 for DOD+DCU, all in10� 4.

4. Results

We �rst compare our DOD method to �rst-frame QEM and
DSD methods in terms of geometric errors for simplifying
the horse-gallop animation sequence from 8,431 vertices to
800 vertices (Figure7). The geometric errors were evaluated
using Metro [CRS98]. Figure8 shows the results. As a ref-

erence, the red curve shows the result of applying the QEM
method independently to every frame. The �rst-frame QEM
approach (green curve) performs worst. Our result (magenta
curve) are much better than the �rst-frame QEM approach
but slightly worse than the DSD method (blue curve). It is
because that the DSD method solely focuses on minimiz-
ing geometric costs while our DOD method also pays atten-
tion to deformation that is not re�ected in this experiment.
Hence, purely in terms of geometric errors, our DOD method
can be outperformed by the DSD method. However, DOD
preserves more deformation and provides better triangula-
tion. Note that, though the independent QEM has the best
performance in terms of geometric error, the resulted anima-
tion has severe popping artifacts.

Figure9 shows that our DOD algorithm provides better
triangulation for horse's tail since it has more deformation.
In practice, our DOD method also avoids sliver triangles be-
cause the introduced deformation cost penalizes the changes
on long edges and more weights are assigned to non-sliver
triangles.

Next, we compare DOD, DOD+DCU, DSD and Kircher
and Garland's method [KG05] for a 3D metamorphosis ex-
ample,horse-to-man(Figure 10). Figure11 shows the re-
sults. Again, the independent QEM provides a reference
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Figure 12: Comparisons of DOD+DCU (top row) and
Kircher and Garland's method (bottom row). In this �gure,
we illustrate the details for the last frame of thehorse-to-man
animation.

Figure 13: Comparisons of DOD+DCU (left) and Kircher
and Garland's method (right). This is the foot part of the last
frame of thehorse-to-mananimation, in which our method
successfully preserves more details.

(red curve). Compared to the DSD method (blue curve), our
DOD method (magenta curve) has almost identical perfor-
mance with the DSD (blue curve) method in this example.
However, the DOD+DCU approach (green curve) generally
has a lower error than the DSD method. It shows that the
DCU method does improve the geometric error since it al-
lows the connectivity to adapt to features better. Kircher and
Garland's method gives less distortion at the beginning, but
the distortion gradually grows up (orange curve). It is be-
cause that it uses the �rst frame as the initial connectivity
and repeatedly warps the connectivity of the current frame
to the next frame.

Figures12and13show the difference of the last frame for
the horse-to-mananimation using our method and Kircher
and Garland's method. Our method obviously adjusts to fea-
tures better than their method. This is, however, partly be-
cause our method uses information of the entire sequence.
One the other hand, Kircher and Garland's method only uses
information from the next frame. Hence, their method is bet-
ter suited for the situations when the deformation is updated

incrementally such as interactive pose editing or physical
simulation. However, when the whole sequence is known in
advance, our method has better performance.

Figures14 and15 show more examples on various ani-
mations. Figure14 demonstrates an example of simplifying
a facial expression animation. Even after removing 95% of
vertices, the simpli�ed meshes can still be rendered faith-
fully to the rendering of original ones. Figure15 shows an-
other example for skinning animation.

The experiments were performed on a computer with an
AMD64 2.0GHz CPU and 12GB memory. The computation
time of calculating the edge cost is 54.31 seconds for the
horse-to-mananimation, which has 200 frames and 52,461
edges for each frame. Constructing the complete vertex tree
takes 445.07 seconds for the 200 meshes in the animation.
The minimization of Equation11 takes 47.60 seconds.

5. Conclusions and future work

In this paper, we propose a method for progressive deform-
ing meshes using the DOD and DCU methods. The DOD
method extends the DSD formulation by augmenting an ad-
ditional deformation cost. The results show a better simpli�-
cation and triangulation than DSD. The DCU framework is
proposed for adapting connectivity of the deforming meshes
by utilizing the vertex tree originally designed for view-
dependent multi-resolution mesh. Our method is easy to im-
plement and generally has lower geometry error than previ-
ous methods.

There are several interesting research directions we want
to explore. First, the position of the newly generated ver-
tex after edge-collapsing is not the optimal. For the cases
which have near planar surfaces during the animation, the
vertex position may be drifted. Second, our DCU method
is not an optimal one. We expect to �nd a way to optimize
Equation10. Third, we expect to extend the DOD algo-
rithm to an incremental algorithm. When little information
is known in advance about the deformation, we can incre-
mentally change connectivity while still preserving the de-
forming area well. Finally, compression and hardware ac-
celeration for progressive deforming meshes are interesting
topics as well.
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Figure 14: A facial expression animation with 192 frames.
Top: The original sequence with 23,725 vertices and 46,853
faces. Middle: 3,201-vertices and 5,825-faces approxima-
tion using DOD+DCU approach. Bottom: 1,200-vertices
and 1,874-faces approximation.

Figure 15: A doganimation with 111 frames. Top: The orig-
inal animation with 4,070 vertices and 8,136 faces. Bottom:
800-vertices and 1,596-faces approximation.
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