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Figure 1: Left: Input unorganized point s&. Middle: Voronoi voxelization oP , where some Voronoi vertices are selected
as poles (colored in navy blue). Right: Bipartite polar classi cation splits théep into two disjoint sets lying in the opposite
sides o (colored in purple and coral, respectively). Note that the Voronoi isowere constructed by offsetting the underlying
torus surface as the boundary constraint.

Abstract

In this paper, we propose bipartite polar classi cation to augment an inynudrganized point se with two
disjoint groups of points distributed around the ambient space od assist the task of surface reconstruction.
The goal of bipartite polar classi cation is to obtain a space partitionind?oby assigning pairs of Voronoi poles
into two mutually invisible sets lying in the opposite side® afhrough direct point set visibility examination.
Based on the observation that a pair of Voronoi poles are mutually invispkgial classi cation is accomplished
by carving away visible exterior poles with their counterparts simultaneodestgrmined as interior ones. By
examining the con icts of mutual invisibility, holes or boundaries can alseffectively detected, resulting in a
hole-aware space carving technique. With the classi ed poles, the taskfaice reconstruction can be facilitated
by more robust surface normal estimation with global consistent oriemtatia off-surface point speci cation
for variational implicit surface reconstruction. We demonstrate the ability efifipartite polar classi cation to
achieve robust and ef cient space carving on unorganized pointdsdavith holes and complex topology and show
its application to surface reconstruction.

1 Introduction isting methods. In certain challenging scenarios, e.g. miss-
ing data or close-by surface sheets, directly interpolating

In computer graphics, extensive efforts have been devoted the holes or smoothing the geometric details without con-
to developing geometric modeling and surface reconstruc- Sidering the orientation information may not produce proper
tion algorithms, which deal with point set data because of reconstruction in terms of topological correctness. Surface
their wide availability. In addition to 3D positions of the sur- ~ reconstruction from unorganized pointdD 92] is thus

face points, some other prior knowledges, suclranted an ill-posed and very challenging problem especially when

normal vectorsplay crucial roles in the success of many ex-
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such side information is hard to infer due to the defects of pole pairs enables us to detect holes when examining their
the point cloudsHLZ 09]. visibilities.

In summary, the proposed method, which we daH

Traditionally, the classical algorithmrHDD 92] and its ] A ; ' ) !
partite polar classi cation(BPC), aims to identify the in-

variants start from estimating normal directions by local *° . X )
principal component analysis (local PCA) followed by a pri- Side/outside regions of a shape. Speci cally, the proposed
oritized orientation propagation process exploiting the mini- Method assigns the Voronoi poles to two disjoint sets by it-

mum spanning tree traversal to align the normal vectors such fratlve!yhca;]rvmg out the v:5|ble_ polles lying Iout5|de the sur-
that they can have consistent in/out orientations. The ori- 'a¢€ with the opposite poles simultaneously determined. It

ented normal elds can then be utilized to reconstruct the €XPIOits thehidden point removalHPR) operator{TB07]
implicit functions approximating the surface or serve as an for visibility examination and is simple to implement and ef-

input of other reconstruction algorithm&BC 01, KBHOB]. cient to compute. In additign, th_e proposed method is_ hole-
To handle some situations like close-by surface sheets or thin 2Ware and capable of dealing with incomplete raw point sets

surface features, special priority measure and feature detec-"v'thcl’qut ad?]monal mformanog. Compared with existing al-
tion can be taken into account to improve the robustness of gqut ms, the proposed me_t od is more _robust to estimate
the orientation propagatiohL.Z 09]. oriented surface normals with global consistency.

Despite the efforts taken by the traditional schemes, to 2 Related Work
correctly propagate the orientations remains a challenging Visibility information has been widely exploited by various

problem, since 'normgl estimation may be_ unrellablc_a and space carving techniques. One of the classical approaches
iny local conS|derat|0n_s are tgken to align the orlf_enta- is the volume carving methoL96], which eliminates the
tions between nearby points, which may actually drastically empty voxels along the line-of-sight from the sampled points

change. In €CLN10, b_inary orientation treg(BOT) ViSl_J' to scanner. Another class of approaches is the image-based
ally carves outthe ambient space of a model from outside for yig a1 hyl| which utilizes silhouette information from a

S%‘Tface reconstruction by explo_iting the direct point set V_iSi' number of reference images to carve out the outside regions
bility [ KTB07] and shows superior performance of resolving not belonging to an objecthu94. Instead of volumetric

the point set or_ientation to traditional orientation propaga- representations, BOTOCLN1(] accomplishes space carv-
tion. Hov_vever, it can_only_ handl_e cI_osed shapes due to the ing on raw input point clouds by takingshapshotsfrom
assumption that the interior region is everywhere occluded 4165 viewpoints to tag and remove certain exterior aux-
by the input point set. Recentlgone carving{SSZCO10Q iliary points depending on their visibilities. However, such
also takes advantage of global visibility property to carve a simple carving process cannot prevent from penetrating

gyt the exterior space of a shape to derive a more gccurateinto holes which reveal the inside space of the point set.
istance-to-surface measure for surface reconstruction even, [SSZCO1, cone carving createssibility conesapexed

with the presence of large holes or missing data. Its main
drawback is the high computational complexity which de-
grades its feasibility in practical applications.

at each point and extended outward to carve away the out-
side space, whose silhouette is traced by a view-dependent
point rendering process. Since splatting of all other points
Given an input point se®, we aim to establish a bipar- is requ!red, it is not an ef cient algorithm even. With the ac-
tite space partitioning by classifying a set of representative Celeration of GPUs. The HPR operat&T[B07] is directly
points distributed aroun® into two disjoint subsets to fa-  related toour method. It determines the visible points among
cilitate the following surface reconstruction task. One key @& Point set from a given viewpoint througrspherical ip-
observation is that the points lying in theppositesides ping transformation and convex hull computation. Recently,
of a shape (e.g. infout of closed surfaces or front/back of Mehraetal. [MTSM10] extended the HPR operator to deal
open surfaces like frontal human faces) are mutually invisi- With point sets containing concavities, non-uniformly spaced
ble from each other. Another intuition is that when observing  Samples, and possibly corrupted with noise. Some other re-
a 3D model, once some points from its opposite sides are si- 12ted works NT00, ZZBWO08] include the visibility-driven
multaneously visible, it implies that we are looking into a algorithms aiming to identify the interior and exterior parts
hole or across a boundary. Therefore, we take advantage of©f Polygonal models.
point set visibility as a means of classi cation and exploit The pioneering work of Hoppet al. [HDD 92] com-
the 3D Voronoi diagram constructed &hto generate the putes a signed distance function approximating an unorga-
representative points embedded in the ambient spaBe of  nized point cloud by using estimated tangent planes, which
Speci cally, each input poinp P is associated with apair  is followed by iso-surface extraction. Many implicit sur-
of poles p* andp , which are selected from the vertices face modeling methods have been developed, such as vari-

of the corresponding Voronoi voxel gf Since the Voronoi ational implicit surfaces of radial basis functions (RBFs)
poles (i.e., the set g&* andp ) are highly likely to be op- [CBC 01, TO0Z, multi-level partition-of-unity ODBA 03]
posite with respect to the shape describedPbiy carefully and Poisson reconstructiolKBHO06]. All of these meth-

selected, such mutually exclusive property of the Voronoi ods require prescribed surface normals to facilitate the re-
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which are mutually invisible to obtain a bipartite classi ca-
tion. Such a classi cation problem is dif cult in selecting
suf cient and discriminative points to identify the spatial re-
lationship and also to t to the application in question. For
surface reconstruction, we associate each gginP  with
a pair ofpolespi+ andp; , which are supposed to be oppo-
site and thusnvisible to each other. Speci cally, the HPR
operator KTBO7] is utilized to carve out the visible exte-
rior poled from the space and assign thentd with their
opposite poles assignedRo simultaneously. Note that ini-
(a) (b) tially pi+ andp; do not necessarily correspond to eitRer
orP ,and are then classi ed by visual carving. Hole detec-
Figure 2: (a) Hole detection with the poles and main axes of tjon is rst performed by checking the con icts of mutual
the con ict Voronoi voxels shown in blue spheres and lines, jnyisibility between the pole pairs from some preselected

respectively. (b) Spatial classi cation withogtsphere carv-  viewpoints before the iterative carving process. The aware-
ing. The green spheres are the unclassi ed poles, which can- ness of holes prevents us from carving the poles away from
not be carved away by visual carving. both sides of to obtain incorrect spatial classi cation. To

summarize, the proposed methbipartite polar classi ca-
tion (BPC), consists of the following main componensle

construction task. Some other approaches achieve 3D re- . . . . o
selection hole detectioranditerative polar classi cation

construction by rst computing unsigned distance approx-
imation to the input data followed by stochastic signing
of the function MdGD 10]. To obtain precise geometric
and orientation information of a 3D modedNRDRO0] is

a process subject to the data acquisition conditions, which
may be affected by the presence of material artifacts, shad-
owing or inaccurate registration. To deal with incomplete
scan data caused by physical inaccessibility or poor visi-
bility, an interactive technique is introduced to recover the
topology of complex undersampled regions with user in-
put [SLS 07]. To reliably estimate the surface normals, par-
ticularly with globally consistent orientation, is considerably

dif cult and has been intensively investigated in previous re- of V; farthest fromp;. However, the Voronoi voxels would

searchesjDD 92,ACSTD07,GGO7HLZ 09, become irregularly shaped with the in uence of noise. Sim-
Voronoi diagrams and Delaunay triangulations have been jj5r to [ACSTD07, we perform a covariance analysis ¥n

widely applied in surface reconstructio&N194, ABK98, to obtain a principal axis; and its anisotropys; 2 [0;1],

DGO03 CG04, which proyide prO\_/a_lbIe theoretical guaran-  \hich is de ned ass; = 1 llﬂ wherel in andl max COr-

tees under proper sampling conditions. However, the quality oqn4nq to the smallest and Targest eigenvalues, respectively.

of Voronoi-based approaches typically degrade due to under- A high s, implies an elongate¥; extending perpendicularly

or non-uniform sampling. Although, the idea of using poles to the shape, ang’ andp; can thus be selected to be the

for surface reconstruction is not neABK98,ACKO], the ; farthest vertices of a{long ni. In contrast, a lovs; in-

proposed method differs from the previous ones in identi- icates that the vertices of are isotropically distributed.

fying suf cient poles of high con dence by checking their  rperetore, no poles are included for spatial classi cation.

V'S'b'“t_'es’ _Wh'Ch IS a We"?‘k gssumptl_on that_ is true under We empirically adopted a threshold of 0.9 for pole selection.
most situations. The contribution of this work is thus a novel A voxel Vi and its pole pailpr andp, are referred to as

algorithm to classify the initially unorganized poles into two reliableif s; > 0:9, otherwise they areulnerable For noisy

sets with explicit spatial identi cation to facilitate surface data sets, we optionally apply theeighted locally optimal
reconstruction. projection(WLOP) operatorHLZ 09] to preproces® be-

3 Bipartite Polar Classi cation fore the Voronoi voxelization.

3.1 Pole Selection

For spatial classi cation, it would be most desirable to cre-
ate a number of representative points which can be poten-
tially divided into two mutually invisible sets. To achieve
this, we choose to construct a 3D Voronoi diagrahof

P with each voxelV; 2 V occupied by only a single point

pi 2 P based on the observation exploited by some previ-
ous methodsABK98, ACKO1]. Since the Voronoi voxels
tend to be long and skinny under a good sampling quality,
the poles can thus be simply selected from the two vertices

Given a point seP, which possibly contains noise, holes
and non-uniformities, our goal is to partition the space into
the two opposite sides of the shape describedPbyTo
achieve this, we formulate it as a space carving problem by ¥ without loss of generality, we refer to the poles observedhiay

grouping a set of representative poifS into two disjoint HPR operator as the exterior ones, since they are usuallylevis
setsP* andP (e, P*[P =P%andP*\P =), when viewing from outside.
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3.2 Hole Detection

The aforementioned polarized Voronoi voxelization pro-
vides us a number of reliable poles, which are eligible for
the following spatial classi cation. It is important to be con-

scious of the presence of holes Ih for a space carving

method like BPC to succeed. In geometric models, holes

are the locus where the spatial identi cation con icts occur.
With the mutual opposite property between the Voronoi pole
pairspi+ andp; , such conicts can be easily detected by
examining their visibilities from a certain viewpoint. If both

a pair of Voronoi poles are observed at the same time, we are

aware that a hole is visible under current viewing direction,
which should be avoided. Hence, we perforprascanning

process for hole detection before space carving. From a set

of preselected viewpoints, the HPR operatéfB07] is ap-
plied to all reliable pole pair$30 as well asP to detect
the con icts. Note that holes or boundaries are typically not
visible under all viewing directions. Hence, it is important
to record the detected Voronoi pairs of con ict afréeze
them during the following space carving. The frozen poles
are never removed and function abarrier across which

@) (b)

(© (d

line-of-sight cannot pass. Undoubtedly, increasing the view- Figure 3: Noise effect on Voronoi voxelization and the re-

points in prescanning will certainly nd more such protec-
tive Voronoi pole pairs. Empirically, we found that it is suf -
cient to prescan a model along the opposite directions,of
y- andz-axes if it is located at the origin. Figugxa) shows
the Voronoi poles of con icts and the detected hole of the

DisTcAPdata set.
3.3 lterative Polar Classi cation

After hole detection, we are ready to cIassiFyO:
fp/:p, i8pi P ;si> 0:9gintoP™ andP . The follow-

ing iterative procedure composes the proposed polar classi-

cation method:

1. Initially, a number of viewing directions on a unit sphere
are uniformly sampled.

sults of BPC. (a) A cleaKNOT data set consisting of 10,000
points, and there are 9,529 reliable pole pairs. (c) KweoT
data set is perturbed by 1% random noise, and the number
of reliable pole pairs hence decreases to 4,059. (b) and (d)
are the corresponding reconstructed RBF surfaces of (a) and
(c), respectively.

sphere ofP). For ef ciency consideration, we do not per-
form visibility examination from all candidate viewpoints
and empirically eliminate the nearest 1015 viewpoints
to the currentc from the candidate set since the elds of
vision of such viewpoints do not vary much from Typ-
ically, the rst few iterations identify most exterior poles.
Some exterior poles occluded Byor other exterior poles in

2. Randomly choose an unused viewing direction and place p© depending on the viewpoints are gradually observed as

a virtual camera at suf ciently far away along this di-
rection. Then, apply the HPR operator to obsdmjé® 0
fromc.

3. Remove the observerf orp; from P%and assign ev-
ery visible pole t®®* and its counterpartt® , but skip
the poles if con icts occur (i.e., botpi+ andp; are ob-
served).

4. For every carved pole pair, recursively perfographere
carving

5. Repeat from Step 2 P is not empty (excluding the
frozen poles) and there are still unused viewing direc-
tions.

In Step 1, we uniformly sample 300 viewing directions
on a unit sphere which suf ciently exposesandP °when
performing the HPR operation. The actual viewpointre
positioned by extending the viewing directions from the ori-
gin with a distance of 20 30 (relative to a unit bounding

the iterative carving algorithm proceeds. Recall that the pro-
tective poles detected in the prescanning stage indicate the
existence of holes or boundaries. Therefore, they are never
removed in Step 3 even though con ict does not occur under
the current viewing direction. The co-existence of pairs of
protectivepi+ andp; is important for hole detection as soon
as a hole becomes visible from a new viewpoint.

In Step 4 g-sphere carvingtands for the process of plac-
ing a ball of radiugycentered at a classi ed pole and carving
away any other unclassi ed poles lying within tigesphere
with the same polar classi cation, which is conceptually
similar to thea-balls used to construct tlee shapesEM94].

Such a supplementary carving operation possesses signif-
icant impact on BPC. We conservatively gpto a small
value due to two reasons. First, the Voronoi poles tend to
cluster, which implies distant points id may have neigh-
boring poles. This phenomenon is best understood by con-
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@) (b) (c) (d)
Figure 4: Surface reconstruction of a sparse and non-uniform pointsetD. (a) The BPC result. (b) The normal estimation
and orientation propagation byHLZ 09]. (c) and (d) The reconstructed RBF surface by the normal elds iolethfrom (a)
and (b), respectively.

sidering the DRus (Figure 1) or KNOT (Figure 3) model, variation implicit surface§TO02 CBC 01], which specify a
which is symmetrically shaped. The interior poles form a number of locations to assist the implicit surface to separate
curve with each pole extremely close to its neighbors. By the inside/outside space. Voronoi voxelization and BPC can
carving away the nearby interior poles, the corresponding thus simplify the task of reconstructing the variational im-
exterior poles can also be explicitly classi ed, which may plicit surfaces from unorganized points. Speci cally, a sub-

be hard to be reached by visual carving. In practice, a small
gsuf ces to globally deliver local classi cation results over
the entire model. Second, a smgi more appropriate since

P possibly contains holes. Otherwiseg-aphere of adaptive
radius which contains np P may be used. Although the
protective poles indicate the existence of holes, they are usu-
ally not dense enough to block tlgespheres from growing
across the shape boundaries.

4 Applications
4.1 Surface Normal Estimation

For a reliable voxeV, its principal axi; and exterior pole
assigned td® * explicitly specify a normal vector of its cor-
responding poinp; directed outward. As for the vulnerable
voxels, an unsigned normal directinﬂmay be estimated by
local PCA and then orientated with thenearest classi ed
poles ofp; by maximizing

signp) (7 pi) nf @)

Qox

=1

Wheresigr(p?) is a binary function that returns 1 orl

if a pole p? is assigned t®®* or P, respectively. Simi-

lar to cone carving$SZCO10 and BOT [CCLN1Q, BPC
takes the global visibility into account to obtain a spatial
partition compliant with the model structure and is thus
more robust than traditional propagation-based approaches
[HDD 92, HLZ 09], which take only local conditions into
consideration for orientation determination.

4.2 Variational Implicit Surface Reconstruction

The classi ed pole® ™ andP  are semantically similar to
the off-surface constraintgypically required in solving the

c 2011 The Author(s)
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set of P may be augmented by off-surface poiptsexplic-

itly speci ed by their corresponding classi ed poles. Fig-
ure 3 illustrates two examples of reconstructing the varia-
tional implicit surfaces from clean and noisy data sets, re-
spectively. Note that despite the in uence of noise, which
affects the Voronoi voxelization and decreases the size of
PC POstill sufce to deliver the topology and orientation
information of P, resulting in topologically correct surface
reconstruction. Nevertheless, it will still be desirabletm-
solidateP [HLZ 09] to enrich the pole set especially when
the noise level is high.

5 Results and Discussions

With many well-established libraries of computational ge-
ometry algorithms, the implementation of BPC is straight-
forward. We adopted QhullBDH96] for the HPR opera-
tion [KTBO7] and voro++ Ryc07] for the Voronoi voxeliza-
tion, respectively. Initially, the input point st is rst nor-
malized into the interval of 1;1] and translated to be cen-
tered at the origin. voro++ enables us to impose a bound-
ing sphere of radius 5 oR as boundary constraint and the
Voronoi voxelization oP is performed to extrad? o°p [P 0
are then collected together for hole detection (SecB@
and iterative polar classi cation (Secti@?3) with the HPR
operator. Note that the presenceofs essential for separat-
ingP* andP  during the iterative carving process.

Table1 summarizes the CPU runtimes of processing the
models shown in this paper. Generally, BPC takes only a few
seconds to process a point set of moderate size. Despite the
overhead of the Voronoi voxelization and WLOP, BPC is still
quite ef cient to process the point clouds with similar data
size when comparing to cone carvin§§ZCO1(. When
dealing with a largeP, a subset o will be suf cient to
obtain an appropriate spatial classi cation, which is demon-
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Table 1: Computation times for point consolidation
(WLOP), Voronoi voxelization (VD) and bipartite polar clas-
si cation (BPC) on several data sets. Point# and the num-
bers in parentheses under BPC stand for the number of
points and the iteration times of the HPR operation. All re-
sults were obtained on a desktop PC with an Intel i7 2.8GHz
CPU with 2GB RAM, and the computation times are repre-
sented in seconds.

Model Point# | WLOP | VD BPC

TORUS 4,800 - 8.36 0.73 (7)
HAND 7,609 - 12.27 | 2.86(38)

KNOT 10,000 - 1459 | 1.28(7)
INUKSHUK 10,293 | 35.89 | 15.47| 4.25(36)
MANNEQUIN | 10,722| 11.95 | 18.86| 6.97 (40)
FERTILITY 12,081| 17.7 | 33.69| 4.86(42)
DANCER 12,428 | 26.61 | 27.52| 9.19 (43)
CHILDREN 12,500| 10.11 | 15.63| 5.36(39)
DANCER2 12,535| 27.75 | 27.14 | 10.12 (41)
DisTcaP 12,745 - 51.97 | 5.37(36)
HEPTOROID | 14,334 | 23.31 | 15.25| 4.63(36)
BimBA 15,002 - 43.13 | 11.63 (40)
DINOSAUR 18,494 | 31.28 | 99.67 | 19.33 (40)
HORSE 18,532 | 39.06 | 266.1| 21.95 (43)

strated in Figuré. In this example, BPC is performed on a
uniformly sampled subset (1802 points) of a dense point
setP (74;764 points). The orientated normal eld &f can
thus be estimated by local PCA and the classi ed poles of the
sampled subset, as described in Secfidnand the Poisson
implicit surface KBHO6] can then be reconstructed. In this

@) (b)

Figure 5: (a) Uniform sampling of th&imBA point set (15K
points) and the corresponding BPC result; (b) and (c) Re-
constructed Poisson implicit surfaces by (a) and the original
point set (75K points), respectively.

(©

(b)
cY
Figure 6: RBF implicit surfaces reconstructed from (a) the
DiNOSAUR and (b)HORSEdata sets.

example, one can hardly see any visual difference between jg| classi cation can be simultaneously determined. In ad-
the reconstructed surfaces from the coarse and dense pointyition. since Voronoi poles are close to tedial axisof a

sets, and also from the results BYJGSTDO7. It is consid-
ered to be necessary to extract a reasongbtyd sampling
adhered to the underlying shape Pffor such a scenario

to succeed, because a proper Voronoi voxelization is re-
quired to obtain suf cient reliable poles. The WLOP opera-
tor [HLZ 09], which preprocessed several originally denser
point sets as indicated in Tableis potentially suitable for
this purpose.

Being a similar space carving method exploiting direct
point set visibility, BPC brings signi cant performance en-
hancement in dealing with complex models when comparing
with BOT [CCLN10. Figure2 (b) demonstrates an example
of space carving on a point cloud by purely using the HPR
operation, which is taken by BOT. Since the ambient space
of a topologically complex model, such asiBT (Figure3)
or HEPTOROID (Figure 9 (d)), is self-occluded from vari-
ous viewing directions, it is thus dif cult to be handled by
simply visual carving. In addition, the poles lying within the
occluded regions actually form concave shapes of high cur-

vature, which are hard to be observed by the HPR operation.

The property of being opposite with respect to a shape of
pole pairs simpli es the task of space carving since their spa-

shape, they capture the ectional symmetrie®f a geomet-

ric model and approximate to a 2D manifold. T¢pephere
carving explained in SectioB.3 can carry local classi ca-
tion results around to carve out the regions which are actu-
ally not observed by the HPR operation. Concave regions
hidden by topological details which cannot be observed un-
der most viewing directions can thus be gracefully handled.
As shown in Figured, BPC successfully deals with a variety
of shapes of high topological complexity. It is worth noting
that for every point set, the rst six iterations of the HPR
operators account for the prescanning process of the hole
detection. As indicated in Tablk one iteration of the HPR
operation was suf cient for BRUs and KNOT to classify

all poles since their interior poles form continuous curved
medial axises and local classi cation results are propagated
over the model to obtain the global solution ysphere
carving. Unlike traditional volume carving techniques, the
requirement of suf cient “scans” to carve out all exterior re-
gions is greatly alleviated by BPC.

In Figure 4, the performance of BPC and the traditional
normal propagation schemeIL.Z 09] on a sparse and non-
uniform point set with close-by surface sheets is compared.

¢ 2011 The Author(s)
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@ (b)

(© (d)

Figure 7: Surface normal estimation with globally consistent orientation: a)0SAUR by [HLZ 09], (b) DINOSAUR by

BPC, (c)HorsEby [HLZ 09], (d) HORSEby BPC.

In Figure 4 (a), BPC successfully classi ed the Voronoi
poles (with the interior ones shown in coral spheres), which
are then utilized to estimate and orientate the normal vec-
tors of every data point to assist RBF implicit surface re-
construction (Figuret (c)). In Figure4 (b), the previous
method HLZ 09 failed to orientate the normal vectors of
some data points (invisible due to back culling of point splat-
ting), resulting in incorrectly reconstructed surface (Figlire
(d)). Figure7 shows two models whose 3D structures were
recovered by multiview epipolar geometil[06] and con-
tain holes, non-uniformities and noise. The previous method
obviously mis-aligned some normal vectors, while the re-
sults by BPC do not have such problems. Fighislows the
corresponding RBF implicit surfaces of theN®saur and
HorseEmodels by BPC. Some more examples showing the
ability of BPC to facilitate surface reconstruction with thin
structures are demonstrated in Fig8r@) and (b).

Limitations. Due to the goal of bipartite space partition-
ing, BPC is not able to deal with the shapes which can-
not explicitly separate the ambient space into two opposite
sides. As a Voronoi-based method, BPC is affected by the
quality of Voronoi voxelization. In Figuré (c), a proper
Voronoi voxelization was not available in-between the ex-

@ (b) (c)
Figure 8: (a) and (b) The examples of BPC assisted surface
reconstruction from the point sets with thin structures. (c)
BPC failed to separate the close-by surface sheets due to the
lack of reliable poles.

dividually provide reliable surface normal estimation and
collectively convey topology information if properly post-
processed. Despite the overhead of Voronoi voxelization,
BPC is ef cient to compute and simple to implement when
compared to other visibility-driven metho8$ZCO1(. For

tremely close-by surface sheets, so BPC failed to separatefuture work, we plan to investigate the feasibility to derive

the inside/outside space due to the lack of reliable Voronoi

higher level topological representations of point clouds by

poles, and hence resulting in geometrical errors in surface BpC, e.g. skeletons, to assist surface reconstruction under

reconstruction. For similar reasons, it will also be dif cult
for BPC to carve out the exterior regions between opposite
holes.

6 Conclusion and Future Work

To summarize, BPC utilizes Voronoi voxelization to gener-

ate a set of representative points, i.e., poles, suitable to dis-
criminate the opposite sides of a shape. It is based on the

assumption that all exterior poles are visible from outside
and accomplishes spatial classi cation in a fashion of space
carving on point clouds. As a visibility-driven space carv-

ing technique, some advantages of BPC include its hole-

awareness and robustness to derive orientation information

from incomplete raw point sets. The classi ed poles in-

Cc 2011 The Author(s)
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dif cult situations.
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