
Image Super-Resolution by Vectorizing Edges

Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

National Taiwan University
{ffantasy1999, chinkyell}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw

Abstract. As the resolution of output device increases, the demand of high
resolution contents has become more eagerly. Therefore, the image super-
resolution algorithms become more important. In digital image, the edges in the
image are related to human perception heavily. Because of this, most recent
research topics tend to enhance the image edges to achieve better visual quality.
In this paper, we propose an edge-preserving image super-resolution algorithm
by vectorizing the image edges. We first parameterize the image edges to fit the
edges’ shapes, and then use these data as the constraint for image super-
resolution. However, the color nearby the image edges is usually a combination
of two different regions. The matting technique is utilized to solve this problem.
Finally, we do the image super-resolution based on the edge shape, position,
and nearby color information to compute a digital image with sharp edges.
Keywords: super-resolution, vectorization, matting, edge detection, Bézier
curve, mean-value coordinate, interpolation.

1 Introduction

Image super-resolution is a task that scales a digital image up. The ability of scaling
up a digital image is very important for many aspects. For example, there are more
and more high-definition display devices but not all contents produced in such high
resolution, so we have to scale these contents to fill up the whole display.

Super-resolution is a very ill-posed problem due to its nature. If we want to get a
high resolution image with 2x large width and 2x large height, only 1/4 pixels of the
target image can be obtained from the original image perfectly. Other 3/4 pixels
cannot be determined uniquely. To regularize this problem, we have to make some
assumptions.

The most commonly used assumption is that the image is locally smooth.
According to this assumption, many interpolation based methods have been proposed.
Three well-known interpolation methods are nearest neigobor, bilinear interpolation,
and bicubic interpolation. However, these three methods would produce some
unwanted artifacts as shown in Fig. 1 (b), such as the result image may be blurry and
textureless and the edges in the result image may be jaggy or blocky. Because of these
problems, many algorithms have been proposed to solve some parts of them.

In this paper, we focus on the image super-resolution while preserving the image
edges, because image edges are strongly related to human perception of image

2 Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

quality. We consider that blocky artifact would decrease the image quality most
seriously. Inspired by image vectorization techniques, we noticed that if we can
represent the image edges by some parameterization methods. We can reproduce
them at any resolution with the preserved edges. Hence, in this paper, we try to
extract the image edges and use a parametric representation to capture them. We can
get an enlarged image with these edge data while preserving the edges.

(a) (b)

Fig. 1. The result of bicubic interpolation, where (b) is the enlarged red square of (a).

2 Related Work

Super-resolution has been an interesting topic for a long time, so there are many
different algorithms have been proposed. Since it is an under constraint problem, two
typical approaches are usually used to overcome this problem, which are adding data
and adding constraint.

To add more data, multiple image super-resolution raised. They use multiple low
resolution images of the same scene with sub-pixel displacement as the input to
compute a high resolution one. Single image super-resolution includes a wide range
of work. As summarized in [14].

In recent researches, [16] proposed a method that builds an over-complete
dictionary of low resolution image patches from a large image set, and uses a sparse
representation of the image with the dictionary to do the super-resolution. [5]
proposed a new image prior using image gradients and used these gradients learned
from a bunch of natural images to estimate a high resolution image from a low
resolution counterpart. [12] is similar to [5], and based on the statistics about the prior
it can produce a natural high resolution image.

[8] and [11] are very similar to the anisotropic diffusion. They scale the image up
via an interpolation base method, and try to sharpen the edges. Anisotropic diffusion
directly employees the well known image sharpen algorithm “anisotropic diffusion”,
while [8] and [11] deblur the scaled blurry image.

Besides, [13] proposed a tensor voting mechanism to do the super-resolution, and
[3] proposed a soft edge prior to do it while preserving the edges and keeping the

Image Super-Resolution by Vectorizing Edges 3

smoothness of each edge. Generally speaking, algorithms that take image edges into
consideration can produce a more satisfactory image.

3 System Overview

Our algorithm is derived from bilinear interpolation and image vectorization.
Basically, Image edges stand for a large color difference, so to sample the colors from
different sides of an edge for interpolation would produce jaggy edge. To do the
interpolation without edge crossing, we first vectorize the image edges, and analyze
the color compositions to get a more compact representation of the image edges.

Fig. 2 shows the system flowchart. There are several main components in our
system, which are:

• Edge Detection and Edge Extraction;
• Matting based Image Color Analysis;
• Sub-pixel Refinement and Edge Shape Fitting;
• Represent the image using a Polygonal Representation;
• Edge-Preserving Super-resolution.

Color AnalysisEdge Forming

Edge Detection

Edge Extraction Matting

Trimap
Generation

Edge Shape
Approximation

Subpixel
Refinement

Edge Shape
Fitting

Polygonal Image
Representation

Compute Grid
Bezier Point

Sample Bezier
Curve Point

Polygon
Generation

Vertex Color
Determination

Edge Preserving
Super Resolution

MVC
Interpolaion

Heuristic Re-
blur

Low Resolution
Image

High Resolution
Image

Fig. 2. System flowchart.

Since we want to vectorize the image edges, the well known Canny edge detector
[1] is used to compute the edge map. The detected edge pixels are linked to form the
edges. After extracting the edges from the edge map, we analyze the color
information nearby the edges by using a matting algorithm. Then, we use these color
information to improve the position of the edge pixels and record these color data as a
component of the associated edges.As long as sub-pixel refinement is done, we can
vectorize the edge with piecewise smooth cubic Bézier curves. Bézier curve is a
parametric curve, we can scale it to any resolution we want without loss its
smoothness and any outline deformation.

4 Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

Finally, to do the interpolation with the edges as the color sampling constrain, we
employee the mean value coordinates (MVC) [6] to do the interpolation. MVC is a
coordinate with only the function values defined on the polygon vertices. Hence, we
make a polygonal representation of the original image with its pixel grids and Bézier
curve samples as the vertices. Then, we do a heuristic Gaussian reblurring on the
MVC interpolated image.

4 Edge Forming

4.1 Edge Detection

We use the Canny edge detector [1] to find the edge pixels and employ the MATLAB
version of the Canny edge detector, so that we can thin the edge to 1-pixel width
successfully. Canny edge detector can only accept a single channel image to compute
the edge map. We first convert the image from RGB color domain to YUV color
domain, and only use the Y-channel image to compute the edge map. Because the
edges detected in the Y-channel image are more intuitive for human.

4.2 Edge Extraction

After detecting the edge pixels, we link each pixel with its 8-way neighborhood. The
edge map treats as a graph. For each pixel, we record its neighboring amount N ,
which indicates the degree of each pixel after edge extraction. First, we search all
pixels with only one neighbor (1N =) as the roots, then traverse the map in a DFS
manner. As a pixel has been connected, we decrease its neighbor amount N to reflect
how many times the pixel linked.

The graph is traversed from each root until we meet another pixel that has only one
neighbor or a pixel with 0N = , and this path forms an edge. Because, most edge
pixels can have only two neighbors, this process can traverse most edges without any
problem. However, if we encounter a pixel has more than two neighbors, we choose
the one with smaller spatial distance and color distance as the next pixel. After we
traversed all edges from 1-neighbor root, we search all 2-neighbor pixels as the roots
again, while the procedure is the same.

5 Edge Color Analysis

After edge extraction, we want to interpolate the pixel color without crossing the
edges. We need to do the interpolation on a target pixel that is nearby some Bézier
curves, we will use the color samples from the Bézier curves and those from the grid
points at the same side of the edge to compute its color and preserve the edge at the
same time.

Image Super-Resolution by Vectorizing Edges 5

5.1 Trimap Generation

To utilize the image matting technology, a trimap is necessary. In our system, we
generate it automatically by assigning one side of the edge as the foreground region
and another side as the background region. However, the edge can reside anywhere in
the image, and it may only separate a small area of the image into two regions.
Therefore, to generate a trimap associated to an edge, we have to crop a patch of the
image nearby the edge first, and then solve the colors by image matting.

5.2 Matting

(a) (b) (c) (d) (e)

Fig. 3. Result of trimap generation and matting algorithm.

After generating the trimap of each edge, we are ready to solve the image matting
problem. Though the generated trimap is not so perfect, the closed-form matting [9]
can generate quiet adequate solution for most cases. As shown in Fig. 3, (a) is the
cropped images for each edge extracted by our algorithm; (b) is the automatically
generated trimaps (the white, black, and gray colors indicate the foreground pixels,
background pixels, and unknown region, respectively); (c) is the alpha map solved by
closed-form matting [9]; (d) and (e) are the solved background and foreground
images, respectively.

6 Edge Shape Approximation

6.1 Sub-pixel Refinement

An ideal edge should reside in between the gradient local maximum and local
minimum. The Canny edge detector only has pixel-level precision. Furthermore, an
edge in a color image should relate to all color channels. If we detect each color
channel separately, how to merge them will be a problem due to the inconsistency. To
overcome this problem, we use an alpha map generated by the matting algorithm. As
[13] depict, the alpha values are adequate to do the edge pixel enhancement.

Rather than simply utilizing the sub-pixel refinement method in [13], we compute
the sub-pixel position of an edge pixel by a method similar to Harris corner detector

6 Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

[7]. We think that the ideal position of an edge pixel should between the foreground
and background that means an edge pixel should have 0.5α = . To find such position,
we slice the alpha value along the gradient of the point as an 1D function, and search
a position of 0.5α = approximately. First, we approximate the 1D function using the
Taylor expansion:

2(0)() (0) (0)
2

ff x f f x x
′′

′≈ + + .

Then, we can solve () 0.5f x = by the above formula and moving the edge pixel to
x .

6.2 Edge Shape Fitting

After extracting the edges from the edge map and the sub-pixel refinement, we can fit
the edge shape by a piecewise smooth cubic Bézier curve. For an edge with point 0P ,

1P ,..., nP , we want to find a piecewise Bézier curve (,)Q t V that fits 0P , 1P ,..., nP .
Assume that the curve (,)Q t V passes through 0P and nP , it could be defined as:

3

0
(,) ()k k

k
Q t V B t V

=

= ∑ ,

where 0 1t≤ ≤ , 0 0V P= , 3 3V P= , 1 2(,)V V V= , and

33
() (1)k t

kB t t t
k

− 
= − 
 

.

Then, we can try to find the curve (,)Q t V by minimizing
1 1

1 1
(,) [(,)] [(,)]

n n
T

i i i i i
i i

D t V d Q t V P Q t V P
− −

= =

= = − ⋅ −∑ ∑ ,

where 1 1(,...,)nt t t −= .
We employ the algorithm in [2] to do the curve fitting. When the average fitting

error of a curve exceeds a threshold set by the user (in our experiments, we set it to
0.5), we split the curve into two curves at a point with the largest fitting error. We do
not force smoothness in the conjunction point of the edge split; because of keep it
unsmooth can preserve its shape better.

7 Polygonal Image Representation

Because the edges’ neighborhood may be overlapped and we need a global pixel
value when we calculate the target image. To do the interpolation without edge
crossing, we use MVC (Mean Value Coordinate) [6] to interpolate the pixel values by
using the original image grids and the Bézier curve points as the MVC polygons’
vertices.

Image Super-Resolution by Vectorizing Edges 7

7.1 Computing Bézier Grid Points

To get the Bézier grid points on the original image grids means that we want to find
the following set:

{ | (,). (,). }S t Q t V x Z Q t V y Z= ∈ ∧ ∈ .

That means we have to solving t by given (,)Q t V and an integer n . Basically, it is a
root-finding problem; however, since our equation is in the Bézier form, it can be
solved by a more efficient method called Bezier clipping [10].

7.2 Sampling Bézier Curve Points

After all Bézier grid points of one Bézier curve are calculated, the set S is sorted for
further usage. When we get all grid samples from an edge, we uniformly sample the
points between two consequent grid points by simply interpolating the parameter
between those points.

7.3 Polygonal Image Representation

Fig. 4. An example of polygonal representation of an image.

Because there can be multiple polygons in an original image grid and the MVC needs
polygon vertices in counter clockwise, we build an association list that uses the
original image grids as the indices, and record which Bézier grid point belong to the
image grid point’s neighboring. According to this association list, we can form a point
list by traversing each grid point’s list counter clockwise. Then, we build a polygon
list from the point list.

Note that the Bézier point in between the two Bézier grid points can reside outside
of the current image grid, so before connecting them, some checks must be done.
Because we use every point inside the list as a starting point of a polygon, we have to
check the polygon before inserting it into the polygon list. Finally, we can get the
polygon list of a grid.

8 Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

7.4 Vertex Color Determination

Because vertex color can be affected by the edges, we have to use the edge position as
a hint to determine the color of each vertex. Hence, we scale the edges first, and then
we can compute the vertex color. For each edge, we have assigned each side of it with
different regions in the trimap generating step. To determine the color of each vertex,
we have to scale the edges to the target resolution, and determine where the
foreground and background regions are in the target resolution.

However, we have sampled each Bézier curve into a sequence of points in the
polygon generating step. Therefore, we scale each sample point, and then connect the
consequent points with a single line. At last, we use an identical foreground and
background assignment of the trimap generating step by similar rules. In the
following section, we call the scaled foreground and background map as FBMap.

For all Bézier curve points, we assign its color as blend and record its associated
Bézier curve, and determine its color until we do the interpolation. For a vertex of the
original image grid, it can be covered by FBMap. Here we say “cover” means that the
vertex resides in the unknown region of the trimap of the associated edge. If there is
no FBMap covers it, we will use the original image pixel color as its color. There is
only one FBMap covers it. If it belongs to the foreground or background region, we
assign it the color of the foreground or the background. If it belongs to the blend
region, we have to determine its color until we do the interpolation,. If there are more
than one FBMap cover it, we can calculate the pixel color within each FBMap by fore
mentioned method, and calculate an associated confidence value defined by [15]:

((1))
(,)d

C F B
R F B

F B
α α− + −

=
−

,

where C is the original pixel color, α is the alpha value, and F and B are
foreground and background colors, respectively. We choose the pixel color with the
lowest confidence value as its color.

8 Edge Preserving Super Resolution

8.1 Mean Value Coordinate

While taking the edges as the constraint, we use the MVC to interpolate the pixel
colors. After we determine the polygonal representation of the image, we can use the
MVC to interpolate the pixel colors inside each polygon smoothly.

8.2 Image Interpolation using MVC

For each scaled grid of the image, we first count how many polygons inside the
grid. If there is only one polygon inside, we can directly apply the MVC with the
vertices’ pixel colors as the function values to do the interpolation. However, we use

Image Super-Resolution by Vectorizing Edges 9

the bilinear interpolation to accelerate the process. If there is more than one polygon
inside, we need to determine the target pixel belongs to which polygon and then use
the polygon to do the MVC interpolation.

When we do the interpolation, there are still some vertices’ colors have not been
determined, so as we find which polygon the target pixel belongs to, we have to
examine the color of each vertex. If the vertex color has been assigned blend, then we
first determine the polygon belongs to which side of the associated Bézier curve. If
the polygon belongs to the foreground, then each vertex with the blend color should
be assigned the foreground color of the edge and vice versa.

8.3 Image Reblurring

(a) (b)

Fig. 5. Function along edge gradient.

When we sample the color that affected by the edge, we use the foreground and
background colors directly. This procedure makes the gradient along the edge of our
system becomes a step function that contains only the pure foreground and
background colors as shown in

(a) (b)

Fig. 5 (a). For a nature image, the gradient along the edge should be a smooth
function. As [4] depict, this phenomena will make the image unnatural, so reblurring
is needed for a more natural image.

9 Result

In this section, we show some results of our method. In each of our experiment, we
scale the original image to 8x size. Fig. 6 shows the results. Table 1 lists the
performance of each step of our system. We tested our system on a desktop PC with
an Intel Core2Quad 2.4GHz CPU with 3.0GB RAM without any optimization. The
performance depends on the edge extraction and the input image size.

Table 1. Performance.

 Case1 Case2
Width (px) 511 535
Height (px) 397 500

10 Chia-Jung Hung Chun-Kai Huang Bing-Yu Chen

Edge Number 325 435
Edge Detection (sec.) 0.75 0.83
Edge Generation (sec.) 0.01 0.03
Trimap Generation (sec.) 32.08 73.81
Mat Solving (sec.) 16.05 20.97
Sub-pixel Refinement (sec.) 0.14 0.13
Edge Shape Fitting (sec.) 10.06 22.16
Béizer Curve Sampling (sec.) 1.00 1.56
FBMap Generation (sec.) 12.14 33.77
Vertex Color Determination (sec.) 38.05 62.36
Edge Preserving Interpolation (sec.) 278.8 502.2
Total Running Time (sec.) 389 717

Fig. 6. Result images.

10 Conclusion and Future Work

In this paper, we proposed a new method to do the edge-preserving image super-
resolution. We represent the image edges with an explicit parametric form, and use
the image matting as a tool for color analysis. Our system can produce acceptable
result even in a very large scale factor. However, since our algorithm is based on the
Canny edge detector, there may be some failure cases due to it. To further enhance it
is one of our future work. Besides the image quality, the performance is also a typical
issue. There are some components may be accelerated by using SIMD instructions or
GPGPU technologies.

Image Super-Resolution by Vectorizing Edges 11

11 Acknowledgement

This paper was partially supported by the National Science Council of Taiwan under
98-2622-E-002-001-CC2 and also by the Excellent Research Projects of the National
Taiwan University under NTU98R0062-04.

12 References

1. Canny, J.: A Computational Approach To Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679--698. (1986)

2. Chang, H., Yan, H.: Vectorization of Hand-Drawn Image using Piecewise Cubic Bézier
Curves Fitting. Pattern Recognition, vol. 31, no. 11, pp. 1747--1755. (1998)

3. Dai, S., Han, M., Xu, W., Wu Y., Gong, Y.: Soft Edge Smoothness Prior for Alpha Channel
Super Resolution. In: IEEE Conference on Computer Vision and Pattern Recognition.
(2007)

4. Elder, J.H.: Are Edges Incomplete? International Journal of Computer Vision, vol. 34, no. 2-
3, pp. 97--122. (1999)

5. Fattal, R.: Image Upsampling via Imposed Edges Statistic. ACM Transactions on Graphics,
vol. 26, no. 3, Article no. 95. (2007)

6. Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for Instant
Image Cloning. ACM Transactions on Graphics, vol. 28, no. 3, Article no. 67. (2009)

7. Harris, C., Stephens, M.J.: A Combined Corner and Edge Detector. In: Alvey Vision
Conference, pp. 147--152. (1988)

8. Joshi, N., Szeliski R., Kriegman, D.J.: PSF Estimation using Sharp Edge Prediction. In:
IEEE Conference on Computer Vision and Pattern Recognition. (2008)

9. Levin, A., Lischinski, D., Weiss, Y.: A Closed Form Solution to Natural Image Matting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 228--
242. (2008)

10. Sederberg T.W., Nishita T.: Curve Intersection using Bézier Clipping. Computer-Aided
Design, vol. 22, no. 9, pp. 538--549. (1990)

11. Shan, Q., Li, Z., Jia J., Tang, C.K.: Fast Image/Video Upsampling. ACM Transactions on
Graphics, vol. 27, no. 5, Article no. 153. (2008)

12. Sun, J., Sun, J., Xu Z., Shum, H.Y.: Image Super-Resolution using Gradient Profile Prior.
In: IEEE Conference on Computer Vision and Pattern Recognition. (2008)

13. Tai, Y.W., Tong, W.S., Tang, C.K.: Perceptually-Inspired and Edge-Directed Color Image
Super-Resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, vol.
2, pp. 1948--1955. (2006)

14. van Quwerkerk, J.D.: Image Super-Resolution Survey. Image and Vision Computing, vol.
24, no. 10, pp. 1039--1052. (2006)

15. Wang J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: IEEE Conference
on Computer Vision and Pattern Recognition. (2007)

16. Yang, J., Wright, J., Ma Y., Huang, T.: Image Super-Resolution as Sparse Representation of
Raw Image Patches. In: IEEE Conference on Computer Vision and Pattern Recognition.
(2008)

