
Image Super-Resolution by Vectorizing Edges 

Chia-Jung Hung  Chun-Kai Huang  Bing-Yu Chen 

National Taiwan University 
{ffantasy1999, chinkyell}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw 

Abstract. As the resolution of output device increases, the demand of high 
resolution contents has become more eagerly. Therefore, the image super-
resolution algorithms become more important. In digital image, the edges in the 
image are related to human perception heavily. Because of this, most recent 
research topics tend to enhance the image edges to achieve better visual quality. 
In this paper, we propose an edge-preserving image super-resolution algorithm 
by vectorizing the image edges. We first parameterize the image edges to fit the 
edges’ shapes, and then use these data as the constraint for image super-
resolution. However, the color nearby the image edges is usually a combination 
of two different regions. The matting technique is utilized to solve this problem. 
Finally, we do the image super-resolution based on the edge shape, position, 
and nearby color information to compute a digital image with sharp edges. 
Keywords: super-resolution, vectorization, matting, edge detection, Bézier 
curve, mean-value coordinate, interpolation. 

1 Introduction 

Image super-resolution is a task that scales a digital image up. The ability of scaling 
up a digital image is very important for many aspects. For example, there are more 
and more high-definition display devices but not all contents produced in such high 
resolution, so we have to scale these contents to fill up the whole display. 

Super-resolution is a very ill-posed problem due to its nature. If we want to get a 
high resolution image with 2x large width and 2x large height, only 1/4 pixels of the 
target image can be obtained from the original image perfectly. Other 3/4 pixels 
cannot be determined uniquely. To regularize this problem, we have to make some 
assumptions. 

The most commonly used assumption is that the image is locally smooth. 
According to this assumption, many interpolation based methods have been proposed. 
Three well-known interpolation methods are nearest neigobor, bilinear interpolation, 
and bicubic interpolation. However, these three methods would produce some 
unwanted artifacts as shown in Fig. 1 (b), such as the result image may be blurry and 
textureless and the edges in the result image may be jaggy or blocky. Because of these 
problems, many algorithms have been proposed to solve some parts of them. 

In this paper, we focus on the image super-resolution while preserving the image 
edges, because image edges are strongly related to human perception of image 
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quality. We consider that blocky artifact would decrease the image quality most 
seriously. Inspired by image vectorization techniques, we noticed that if we can 
represent the image edges by some parameterization methods. We can reproduce 
them at any resolution with the preserved edges. Hence, in this paper, we try to 
extract the image edges and use a parametric representation to capture them. We can 
get an enlarged image with these edge data while preserving the edges. 

 
(a) (b) 

Fig. 1. The result of bicubic interpolation, where (b) is the enlarged red square of (a). 

2 Related Work 

Super-resolution has been an interesting topic for a long time, so there are many 
different algorithms have been proposed. Since it is an under constraint problem, two 
typical approaches are usually used to overcome this problem, which are adding data 
and adding constraint. 

To add more data, multiple image super-resolution raised. They use multiple low 
resolution images of the same scene with sub-pixel displacement as the input to 
compute a high resolution one. Single image super-resolution includes a wide range 
of work. As summarized in [14]. 

In recent researches, [16] proposed a method that builds an over-complete 
dictionary of low resolution image patches from a large image set, and uses a sparse 
representation of the image with the dictionary to do the super-resolution. [5] 
proposed a new image prior using image gradients and used these gradients learned 
from a bunch of natural images to estimate a high resolution image from a low 
resolution counterpart. [12] is similar to [5], and based on the statistics about the prior 
it can produce a natural high resolution image. 

[8] and [11] are very similar to the anisotropic diffusion. They scale the image up 
via an interpolation base method, and try to sharpen the edges. Anisotropic diffusion 
directly employees the well known image sharpen algorithm “anisotropic diffusion”, 
while [8] and [11] deblur the scaled blurry image. 

Besides, [13] proposed a tensor voting mechanism to do the super-resolution, and 
[3] proposed a soft edge prior to do it while preserving the edges and keeping the 
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smoothness of each edge. Generally speaking, algorithms that take image edges into 
consideration can produce a more satisfactory image. 

3 System Overview 

Our algorithm is derived from bilinear interpolation and image vectorization. 
Basically, Image edges stand for a large color difference, so to sample the colors from 
different sides of an edge for interpolation would produce jaggy edge. To do the 
interpolation without edge crossing, we first vectorize the image edges, and analyze 
the color compositions to get a more compact representation of the image edges. 

Fig. 2 shows the system flowchart. There are several main components in our 
system, which are: 

• Edge Detection and Edge Extraction; 
• Matting based Image Color Analysis; 
• Sub-pixel Refinement and Edge Shape Fitting; 
• Represent the image using a Polygonal Representation; 
• Edge-Preserving Super-resolution. 
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Fig. 2. System flowchart. 

Since we want to vectorize the image edges, the well known Canny edge detector 
[1] is used to compute the edge map. The detected edge pixels are linked to form the 
edges. After extracting the edges from the edge map, we analyze the color 
information nearby the edges by using a matting algorithm. Then, we use these color 
information to improve the position of the edge pixels and record these color data as a 
component of the associated edges.As long as sub-pixel refinement is done, we can 
vectorize the edge with piecewise smooth cubic Bézier curves. Bézier curve is a 
parametric curve, we can scale it to any resolution we want without loss its 
smoothness and any outline deformation. 
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Finally, to do the interpolation with the edges as the color sampling constrain, we 
employee the mean value coordinates (MVC) [6] to do the interpolation. MVC is a 
coordinate with only the function values defined on the polygon vertices. Hence, we 
make a polygonal representation of the original image with its pixel grids and Bézier 
curve samples as the vertices. Then, we do a heuristic Gaussian reblurring on the 
MVC interpolated image. 

4 Edge Forming 

4.1 Edge Detection 

We use the Canny edge detector [1] to find the edge pixels and employ the MATLAB 
version of the Canny edge detector, so that we can thin the edge to 1-pixel width 
successfully. Canny edge detector can only accept a single channel image to compute 
the edge map. We first convert the image from RGB color domain to YUV color 
domain, and only use the Y-channel image to compute the edge map. Because the 
edges detected in the Y-channel image are more intuitive for human. 

4.2 Edge Extraction 

After detecting the edge pixels, we link each pixel with its 8-way neighborhood. The 
edge map treats as a graph. For each pixel, we record its neighboring amount N , 
which indicates the degree of each pixel after edge extraction. First, we search all 
pixels with only one neighbor ( 1N = ) as the roots, then traverse the map in a DFS 
manner. As a pixel has been connected, we decrease its neighbor amount N  to reflect 
how many times the pixel linked. 

The graph is traversed from each root until we meet another pixel that has only one 
neighbor or a pixel with 0N = , and this path forms an edge. Because, most edge 
pixels can have only two neighbors, this process can traverse most edges without any 
problem. However, if we encounter a pixel has more than two neighbors, we choose 
the one with smaller spatial distance and color distance as the next pixel. After we 
traversed all edges from 1-neighbor root, we search all 2-neighbor pixels as the roots 
again, while the procedure is the same. 

5 Edge Color Analysis 

After edge extraction, we want to interpolate the pixel color without crossing the 
edges. We need to do the interpolation on a target pixel that is nearby some Bézier 
curves, we will use the color samples from the Bézier curves and those from the grid 
points at the same side of the edge to compute its color and preserve the edge at the 
same time. 
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5.1 Trimap Generation 

To utilize the image matting technology, a trimap is necessary. In our system, we 
generate it automatically by assigning one side of the edge as the foreground region 
and another side as the background region. However, the edge can reside anywhere in 
the image, and it may only separate a small area of the image into two regions. 
Therefore, to generate a trimap associated to an edge, we have to crop a patch of the 
image nearby the edge first, and then solve the colors by image matting.  

5.2 Matting 

 
(a)  (b)  (c)  (d)  (e) 

Fig. 3. Result of trimap generation and matting algorithm. 

After generating the trimap of each edge, we are ready to solve the image matting 
problem. Though the generated trimap is not so perfect, the closed-form matting [9] 
can generate quiet adequate solution for most cases. As shown in Fig. 3, (a) is the 
cropped images for each edge extracted by our algorithm; (b) is the automatically 
generated trimaps (the white, black, and gray colors indicate the foreground pixels, 
background pixels, and unknown region, respectively); (c) is the alpha map solved by 
closed-form matting [9]; (d) and (e) are the solved background and foreground 
images, respectively. 

6 Edge Shape Approximation 

6.1 Sub-pixel Refinement 

An ideal edge should reside in between the gradient local maximum and local 
minimum. The Canny edge detector only has pixel-level precision. Furthermore, an 
edge in a color image should relate to all color channels. If we detect each color 
channel separately, how to merge them will be a problem due to the inconsistency. To 
overcome this problem, we use an alpha map generated by the matting algorithm. As 
[13] depict, the alpha values are adequate to do the edge pixel enhancement. 

Rather than simply utilizing the sub-pixel refinement method in [13], we compute 
the sub-pixel position of an edge pixel by a method similar to Harris corner detector 
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[7]. We think that the ideal position of an edge pixel should between the foreground 
and background that means an edge pixel should have 0.5α = . To find such position, 
we slice the alpha value along the gradient of the point as an 1D function, and search 
a position of 0.5α =  approximately. First, we approximate the 1D function using the 
Taylor expansion: 

2(0)( ) (0) (0)
2

ff x f f x x
′′

′≈ + + . 

Then, we can solve ( ) 0.5f x =  by the above formula and moving the edge pixel to 
x . 

6.2 Edge Shape Fitting 

After extracting the edges from the edge map and the sub-pixel refinement, we can fit 
the edge shape by a piecewise smooth cubic Bézier curve. For an edge with point 0P ,

1P ,..., nP , we want to find a piecewise Bézier curve ( , )Q t V  that fits 0P , 1P ,..., nP . 
Assume that the curve ( , )Q t V  passes through 0P  and nP , it could be defined as: 

3
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Then, we can try to find the curve ( , )Q t V  by minimizing 
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where 1 1( ,..., )nt t t −= . 
We employ the algorithm in [2] to do the curve fitting. When the average fitting 

error of a curve exceeds a threshold set by the user (in our experiments, we set it to 
0.5), we split the curve into two curves at a point with the largest fitting error. We do 
not force smoothness in the conjunction point of the edge split; because of keep it 
unsmooth can preserve its shape better. 

7 Polygonal Image Representation 

Because the edges’ neighborhood may be overlapped and we need a global pixel 
value when we calculate the target image. To do the interpolation without edge 
crossing, we use MVC (Mean Value Coordinate) [6] to interpolate the pixel values by 
using the original image grids and the Bézier curve points as the MVC polygons’ 
vertices. 
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7.1 Computing Bézier Grid Points 

To get the Bézier grid points on the original image grids means that we want to find 
the following set: 

{ | ( , ). ( , ). }S t Q t V x Z Q t V y Z= ∈ ∧ ∈ . 

That means we have to solving t  by given ( , )Q t V  and an integer n . Basically, it is a 
root-finding problem; however, since our equation is in the Bézier form, it can be 
solved by a more efficient method called Bezier clipping [10]. 

7.2 Sampling Bézier Curve Points 

After all Bézier grid points of one Bézier curve are calculated, the set S  is sorted for 
further usage. When we get all grid samples from an edge, we uniformly sample the 
points between two consequent grid points by simply interpolating the parameter 
between those points. 

7.3 Polygonal Image Representation 

 
Fig. 4. An example of polygonal representation of an image. 

Because there can be multiple polygons in an original image grid and the MVC needs 
polygon vertices in counter clockwise, we build an association list that uses the 
original image grids as the indices, and record which Bézier grid point belong to the 
image grid point’s neighboring. According to this association list, we can form a point 
list by traversing each grid point’s list counter clockwise. Then, we build a polygon 
list from the point list. 

Note that the Bézier point in between the two Bézier grid points can reside outside 
of the current image grid, so before connecting them, some checks must be done. 
Because we use every point inside the list as a starting point of a polygon, we have to 
check the polygon before inserting it into the polygon list. Finally, we can get the 
polygon list of a grid. 
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7.4 Vertex Color Determination 

Because vertex color can be affected by the edges, we have to use the edge position as 
a hint to determine the color of each vertex. Hence, we scale the edges first, and then 
we can compute the vertex color. For each edge, we have assigned each side of it with 
different regions in the trimap generating step. To determine the color of each vertex, 
we have to scale the edges to the target resolution, and determine where the 
foreground and background regions are in the target resolution. 

However, we have sampled each Bézier curve into a sequence of points in the 
polygon generating step. Therefore, we scale each sample point, and then connect the 
consequent points with a single line. At last, we use an identical foreground and 
background assignment of the trimap generating step by similar rules. In the 
following section, we call the scaled foreground and background map as FBMap. 

For all Bézier curve points, we assign its color as blend and record its associated 
Bézier curve, and determine its color until we do the interpolation. For a vertex of the 
original image grid, it can be covered by FBMap. Here we say “cover” means that the 
vertex resides in the unknown region of the trimap of the associated edge. If there is 
no FBMap covers it, we will use the original image pixel color as its color. There is 
only one FBMap covers it. If it belongs to the foreground or background region, we 
assign it the color of the foreground or the background. If it belongs to the blend 
region, we have to determine its color until we do the interpolation,. If there are more 
than one FBMap cover it, we can calculate the pixel color within each FBMap by fore 
mentioned method, and calculate an associated confidence value defined by [15]:  

( (1 ) )
( , )d

C F B
R F B

F B
α α− + −

=
−

, 

where C  is the original pixel color, α  is the alpha value, and F  and B  are 
foreground and background colors, respectively. We choose the pixel color with the 
lowest confidence value as its color. 

8 Edge Preserving Super Resolution 

8.1 Mean Value Coordinate 

While taking the edges as the constraint, we use the MVC to interpolate the pixel 
colors. After we determine the polygonal representation of the image, we can use the 
MVC to interpolate the pixel colors inside each polygon smoothly. 

8.2 Image Interpolation using MVC 

For each scaled grid of the image, we first count how many polygons inside the 
grid. If there is only one polygon inside, we can directly apply the MVC with the 
vertices’ pixel colors as the function values to do the interpolation. However, we use 
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the bilinear interpolation to accelerate the process. If there is more than one polygon 
inside, we need to determine the target pixel belongs to which polygon and then use 
the polygon to do the MVC interpolation. 

When we do the interpolation, there are still some vertices’ colors have not been 
determined, so as we find which polygon the target pixel belongs to, we have to 
examine the color of each vertex. If the vertex color has been assigned blend, then we 
first determine the polygon belongs to which side of the associated Bézier curve. If 
the polygon belongs to the foreground, then each vertex with the blend color should 
be assigned the foreground color of the edge and vice versa. 

8.3 Image Reblurring 

 
(a) (b) 

Fig. 5. Function along edge gradient. 

When we sample the color that affected by the edge, we use the foreground and 
background colors directly. This procedure makes the gradient along the edge of our 
system becomes a step function that contains only the pure foreground and 
background colors as shown in  

(a) (b) 

Fig. 5 (a). For a nature image, the gradient along the edge should be a smooth 
function. As [4] depict, this phenomena will make the image unnatural, so reblurring 
is needed for a more natural image. 

9 Result 

In this section, we show some results of our method. In each of our experiment, we 
scale the original image to 8x size. Fig. 6 shows the results. Table 1 lists the 
performance of each step of our system. We tested our system on a desktop PC with 
an Intel Core2Quad 2.4GHz CPU with 3.0GB RAM without any optimization. The 
performance depends on the edge extraction and the input image size. 

Table 1. Performance. 

 Case1 Case2 
Width (px) 511 535 
Height (px) 397 500 
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Edge Number 325 435 
Edge Detection (sec.) 0.75 0.83 
Edge Generation (sec.) 0.01 0.03 
Trimap Generation (sec.) 32.08 73.81 
Mat Solving (sec.) 16.05 20.97 
Sub-pixel Refinement (sec.) 0.14 0.13 
Edge Shape Fitting (sec.) 10.06 22.16 
Béizer Curve Sampling (sec.) 1.00 1.56 
FBMap Generation (sec.) 12.14 33.77 
Vertex Color Determination (sec.) 38.05 62.36 
Edge Preserving Interpolation (sec.) 278.8 502.2 
Total Running Time (sec.) 389 717 

 

 

 

 

      
Fig. 6. Result images. 

10 Conclusion and Future Work 

In this paper, we proposed a new method to do the edge-preserving image super-
resolution. We represent the image edges with an explicit parametric form, and use 
the image matting as a tool for color analysis. Our system can produce acceptable 
result even in a very large scale factor. However, since our algorithm is based on the 
Canny edge detector, there may be some failure cases due to it. To further enhance it 
is one of our future work. Besides the image quality, the performance is also a typical 
issue. There are some components may be accelerated by using SIMD instructions or 
GPGPU technologies. 
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