
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Video Segmentation with Motion Smoothness

Chung-Lin WEN†a), Nonmember, Bing-Yu CHEN†b), and Yoichi SATO††c), Members

SUMMARY In this paper, we present an interactive and
intuitive graph-cut-based video segmentation system while tak-
ing both color and motion information into consideration with a
stroke-based user interface. Recently, graph-cut-based methods
become prevalent for image and video segmentation. However,
most of them deal with color information only and usually failed
under circumstances where there are some regions in both fore-
ground and background with similar colors. Unfortunately, it is
usually hard to avoid, especially when the objects are filmed un-
der a natural environment. To make such methods more practical
to use, we propose a graph-cut-based video segmentation method
based on both color and motion information, since the foreground
objects and the background usually have different motion pat-
terns. Moreover, to make the refinement mechanism easy to use,
the strokes drawn by the user are propagated to the temporal-
spatial video volume according to the motion information for
visualization, so that the user can draw some additional strokes
to refine the segmentation result in the video volume. The ex-
periment results show that by combining both color and motion
information, our system can resolve the wrong labeling due to
the color similarity, even the foreground moving object is behind
an occlusion object.
key words: video segmentation, stroke propagation, graph cuts

1. Introduction

As visual effects become a crucial part of current film
and commercial television production, video segmen-
tation, a critical step for many visual effects, arouses
much interest in the film industry and research com-
munity. The so-called video segmentation is done to
extract the foreground moving objects from the back-
ground. It could be used in multiple ways, e.g. to re-
place the actors to a different scene, or reversely re-
place the actors with CGI (computer-generated im-
agery) components. However, to extract the foreground
moving object from a complex natural background is
not only tedious but also extremely time-consuming.

Recently, graph-cut-based methods are prevalent
for image and video segmentation, but most of them
use only color similarity along with some smoothness
constraints as the segmentation criteria, which may fail

Manuscript received July 7, 2009.
Manuscript revised July 14, 2009.
Final manuscript received July 21, 2009.

†National Taiwan University
††The University of Tokyo
a)E-mail: jonathan.clwen@gmail.com
b)E-mail: robin@ntu.edu.tw
c)E-mail: ysato@iis.u-tokyo.ac.jp

DOI: 10.1587/trans.E0.??.1

(a) (b)

(c) (d)

Fig. 1 The comparison of the segmentation results of a walking
bear video. (a) One frame of the ordinal video. (b) Using smaller
color smoothness weighting, a part of the tree trunk is wrong
labeled. (c) Using greater color smoothness weighting, there are
some labeling errors around the foot of the bear. (d) Our result.

when some regions in both foreground and background
have similar colors. For instance, Fig. 1(b) shows a
result of an ordinary video segmentation method with
smaller smoothness weightings, and hence some back-
ground regions (the tree trunk) are wrongly labeled,
since the color of the tree trunk is similar to that of
the walking bear. In contrast, if a greater smooth-
ness weighting is being used, some background regions
(around the foot of the bear) near the foreground will
be merged into the foreground regions as shown in
Fig. 1(c).

Hence, in this paper, we propose a new approach to
this problem. Through our observation, in most of the
cases in video segmentation, the motion pattern of the
foreground moving object is usually quite different from
that of the background. Thus, our video segmentation
method uses both color and motion information to im-
prove the usability. Through our method, the wrong
labeling due to the color similarity could be resolved,
even under the condition that the moving foreground
object is behind an occlusion object.

Moreover, the motion information is also used
for improving the stroke-based interface. Although
some previous methods allow the user to draw the
strokes to indicate the foreground and background in
the temporal-spatial video volume, it is not intuitive

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

enough for the user. To let the user understand how the
strokes effect the video segmentation result and where
to draw some additional strokes, we utilize the mo-
tion information again to propagate the strokes drawn
in some certain frames to other neighboring frames.
Hence, in our system, the user can first draw the fore-
ground and background strokes on the first or a certain
frame as using previous stroke-based image or video
segmentation tools, then refine the video segmenta-
tion result by drawing some additional strokes on other
frames while referring to the initially drawn strokes.
Furthermore, since the additional strokes are used to
refine the original result, the weighting of them is set
to be different from the original strokes in our video
segmentation algorithm.

In the rest of this paper, a brief survey of related
work is introduced in Sec. 2. The details of our video
segmentation algorithm and the user interface issues
are described in Sec. 3 and Sec. 4, respectively. Finally,
the results are shown in Sec. 5 and the conclusion and
future work are listed in Sec. 6.

2. Related Work

To extract a foreground object from a natural back-
ground, there are some approaches to manually fit the
boundary of the object by editable curves, such as B-
spline, which is often called rotoscoping. The process
is usually operated in a fully manually fashion, with a
minor help of image snapping tools [1][2][3] that adhere
to the high contrast region or interpolation tools [4]
that interpolate the keyframe curves to the potential
contours in the other frames, mainly according to the
gradient.

Recently, graph-cut-based methods are prevalent
for image and video segmentation, since the image and
video segmentation could be treated as a multi-labeling
energy minimization problem with extremely high com-
plexity. Thus, it is natural to derive an approximate
solution with guaranteed qualities. Boykov et al. [5]
pioneered in the domain by developing the graph cuts
algorithm to solve the multi-labeling energy minimiza-
tion problem. Kolmogorov and Zabin [6] featured the
energy function that could be minimized: the neces-
sary conditions that could be applied in the graph
cuts framework. Then, Boykov and Kolmogorov [7]
presented some observations with experimental results
while comparing with other alternative modern ap-
proaches.

Based on the graph cuts algorithm, Li et al. pre-
sented Video Object Cut and Paste [8] by extending
their Lazy Snapping [9] from a graph-cut-based image
segmentation method to a video volume with similar
stroke-based user interface. In addition to the data
term and color smoothness term used in Lazy Snap-
ping, to eliminate the temporal artifacts, they intro-
duced temporal coherence cost into the energy function

to be minimized. Based on Lazy Snapping, Progressive
Cut [10] proposed by Wang et al. introduces some high
level observations about the user intentions into the
original energy function of the graph-cut-based image
segmentation method. Besides the stroke-based image
segmentation methods, there are also rectangle-based
ones. For instance, in GrabCut [11], the user can indi-
cate the foreground location by using a rectangle. How-
ever, it is considered that the stroke-based system can
better utilize the geometry nature of the input image.

Similar to Video Object Cut and Paste, Interactive
Video Cutout [12] proposed by Wang et al. also uses the
strokes to collect color information and conducted the
video segmentation in temporal-spatial space by graph
cuts algorithm. In the system, the strokes are allowed
to be drawn in the temporal-spatial space directly in-
stead of a specific frame, although to draw a stroke in
the video volume is not so intuitive for ordinary users.
In the above methods, since the color information is the
only consideration, if the foreground objects and the
background have similar colors, there would be some
errors in the segmentation result. Hence, in this pa-
per, we also take the motion information into account
to handle the cases that are hard to segment solely by
only color information.

There are also some video segmentation methods
deal with the occlusion condition. Xiao et al. [13] pro-
posed a system to conduct motion layer extraction in
the presence of occlusion condition. The system mainly
has two stages, the first one is to segment the seed
regions using motion similarity. Then, by employing
some heuristics that the occlusion area will always in-
crease with time, the system conducts the final segmen-
tation by graph cuts algorithm to refine the segmenta-
tion result. Although the system also uses motion in-
formation for video segmentation, our method is more
general since we do not make any assumption on the
type of occlusion.

Bai et al. [14] also presented a video segmentation
method to solve the same problem by incorporating ad-
ditional user input. Whenever the occlusion occurs, the
user can draw additional strokes in the other side of the
video volume relative to the initial strokes. However,
since our video segmentation method takes the motion
information into consideration, in many cases, the user
is not requested to draw the additional strokes to solve
the occlusion problem. Moreover, through our intuitive
stroke-based user interface with propagated strokes, it
is much easier to draw the additional strokes to refine
the segmentation result if necessary.

3. Video Segmentation with Color & Motion

Before explaining the details of our method, we first
briefly summarize a basic form of the energy function
used in the graph-cut-based video segmentation meth-
ods. In most of the graph-cut-based video segmenta-

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
3

tion techniques, a 3D graph is constructed based on
the temporal-spatial video volume and suitable cuts are
obtained by minimizing the following energy function:

E(lp) = Ed(p) + αEs(p) + βEt(p), (1)

where lp ∈ {F ,B} is a possible labeling of pixel p, and
F and B denote the foreground and background labels,
respectively, and α and β are the weightings to ad-
just the importance of the spatial and temporal color
smoothness terms Es(p) and Et(p), respectively. Ed(p)
is the data term defined in the same way as most of
the previous work [8][9][10], which measures the color
similarity between the pixel p and pre-constructed fore-
ground and background color models. The foreground
and background color models are constructed by col-
lecting the pixels under the foreground and background
strokes drawn by the user at certain frames. Es(p) and
Et(p) encode color smoothness constraints for the pixel
p in the same frame and neighboring frames, respec-
tively.

The data term Ed(p) is defined as:

Ed(p) =















P (cp|GF)

P (cp|GF) + P (cp|GB)
, if lp = F

P (cp|GB)

P (cp|GF) + P (cp|GB)
, if lp = B

where cp is the color value of the pixels p, P (cp|Gx) is
the probability that a specific pixel value cp belongs to
the color model Gx (x ∈ {F ,B}). We use 3D GMMs
(Gaussian Mixture Models) to describe the color distri-
bution by collecting the color values of the pixels under
the foreground or background strokes.

The spatial smoothness term Es(p) is defined by
imposing the color smoothness penalty in the intra-
frame neighboring pixels. The smoothness penalty is
reverse proportional to the color difference, so that the
energy minimization procedure would prefer to assign
the same label to the pixels that have smaller color dif-
ference, which is defined as:

Es(p) =
∑

q∈Ns
p

|lp − lq| · g(||cp − cq||
2),

where Ns
p denotes the spatial neighboring (|Ns

p | = 8)
pixels of the pixel p in the same frame, and g(x) =
1/x+ 1 is used to implement inverse relation.

In addition, video segmentation is different from
image segmentation in that the former one should also
consider the problem of temporal coherence. Other-
wise, it will introduce serious temporal artifacts, which
people are more sensitive to. Hence, besides the intra-
frame color coherence, we should also encode the tem-
poral coherence by adding the inter-frame arcs and im-
posing the penalty for temporal incoherence. The tem-
poral coherence penalty also follows the principle that
pixels have similar color should be labeled as the same

value, thus is also set to the reverse proportion to the
color difference as:

Et(p) =
∑

q∈Nt
p

|lp − lq| · g(||cp − cq||
2),

where N t
p denotes the temporal neighboring (|N t

p| = 2)
pixels of the pixel p in the neighboring frames. After
encoding the temporal coherence, the result is free from
most of the temporal artifacts.

3.1 The Motion Smoothness Term

Although the above energy function works well in cer-
tain cases, there are still several failed cases when some
of the foreground and background regions have similar
colors. The failed cases may be solved by adjusting the
weightings α and β carefully, but it is a tedious task
and suitable weightings are usually difficult to find. To
make the system more easy to use, we must enlarge
the suitable range for parameter tuning. Hence, we
find another criteria that is different in foreground and
background. It can be observed that the motion pat-
terns in the video are usually different for foreground
and background objects, thus we propose to use the mo-
tion information as the other segmentation criteria and
encode the motion smoothness term Em(p) in Eq. 1, so
Eq. 1 can be rewritten as:

E(lp) = Ed(p) + αEs(p) + βEt(p) + γEm(p). (2)

Similar to color smoothness terms Es(p) and Et(p),
we prefer to label the pixels that have similar motion
patterns with the same value, thus we impose motion
smoothness penalty for the pixels that are different in
motion direction. Hence, the motion smoothness term
Em(p) is defined as:

Em(p) =
∑

q∈Ns
p

|lp − lq| · g(vp · vq),

where vp · vq is the inner product of the motion vectors
vp and vq of the pixels p and q.

(a) (b)

Fig. 2 The comparison of the optical flow before and after the
color-guided refinement. (a) Before the refinement, there are
some noises in the boundary region. (b) After the refinement,
some noises are removed.

To make the motion vectors vp and vq as stable
as possible, a revised optical flow algorithm proposed

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

by Brox et al. [15] is used, since it can produce rela-
tively denser optical flow information, which is a critical
condition for the calculation of the motion smoothness
cost. However, since the raw optical flow still has some
noises, we further conduct color-guided weighting aver-
age in the fashion similar to [16]:

vp =

∑

q∈{Ns
p+Nt

p+p} vq · w(p, q)
∑

q∈{Ns
p+Nt

p+p} w(p, q)
, (3)

where the weighting w(p, q) is defined in an inverse pro-
portion to the color difference as:

w(p, q) = 1/(||cp − cq||
2 + ε),

where ε is a small value for avoiding the division by
zero, and the L2-norm color difference is calculated in
RGB color space. Fig. 2 shows the motion information
before and after the color-guided refinement. Even if
there is a pixel p has no motion information, Eq. 3 can
also be used to obtain the motion information from its
neighboring pixels, which improve the robustness of our
system.

3.2 The Weightings

About the weightings of the smoothness terms α, β, and
γ, although the user can leverage his or her high level
knowledge to control whether the data term or each
smoothness criteria should be prioritized, to make the
system easier to use, it is better to provide some guides
for users to control the process of parameter tuning
rather than adjusting them in a try-and-error fashion.
In our experience, the temporal coherence (β) does not
cause too much difference, instead, it is more critical to
keep a good balance between the color (α) and motion
(γ) information.

To check the relationship of the weightings with
the color and motion information, we provide statistics-
based guess for the weightings and plot the standard de-
viation of the color and motion with their correspond-
ing weightings α and γ in Fig. 3(b) and Fig. 3(a), re-
spectively. Besides, values of parameters and standard
variations are summarized in Table 1. For motion (as
shown in Fig. 3(a)), the standard deviation is roughly
reversely proportional to the weighting γ, while there is
no such a clear relation for color (as shown in Fig. 3(b)).
The ratio of color and motion is also roughly propor-
tional between their standard deviations and weight-
ings. However, although we have the above mentioned
observation, more test data and their corresponding pa-
rameters is needed to derive a qualitative rules for a
statistical guess, which may be one of our future work.

4. User Interface

4.1 Propagated Strokes

To make the system easy to use, we provide a stroke-

(a)

(b)

Fig. 3 (a) The plot of the standard deviations of motion with
their corresponding weightings (i.e. γ). (b) The plot of the stan-
dard deviations of color with their corresponding weightings (i.e.
α).

based user interface like other similar systems. How-
ever, to ask the user to draw the strokes in the video
volume like [8] is not very intuitive. On the other
hand, to let the user only draw the strokes on certain
frames makes him or her hardly to draw some addi-
tional strokes on other frames if he or she wants to
modify the current segmentation result. Hence, rather
than asking the user to draw the strokes in the video

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
5

filename image sd motion sd color weighting motion weighting

walking bear 61.170 0.445 25.0 0.8
moving keyboard 51.114 0.677 12.0 12.0
running car 56.168 1.867 6.0 2.0
sitting toy 56.717 0.924 32.0 2.0
swimming fish 61.669 0.509 10.0 8.0

Table 1 The statistics of standard deviation and weightings

(a) (b)

Fig. 4 The strokes drawn by the user are automatically propa-
gated by motion information. (a) The strokes drawn on a certain
frame. (b) The strokes automatically propagated to the neigh-
boring frames by motion information for visualization with light
colors.

volume, we propagate the strokes drawn by the user to
indicate the foreground and background regions on a
certain frame to other neighboring frames according to
the motion information with light colors to make him
or her to understand how the strokes effect the segmen-
tation result and where to draw the additional strokes
to improve the result as shown in Fig. 4.

As a fail-safe feature, the weighting of the propa-
gated strokes is in reverse proportion to the color differ-
ence between the pixel value under the original location
and that of the propagated location. The mechanism
can prevent the interference of inaccurate propagation.
In addition, as Fig. 4(b) shows, to make the impact
of each stroke can be easily understood by the user,
our system shows the propagated strokes with different
alpha values, to indicate the different weightings they
possess.

4.2 Local Refinement by Additional Strokes

Due to the local color nature, it is usually the case that
there may be some regions that are hard to segment
right in the first time. Hence, we provide the facility to
the user to refine the result like [10]. In mathematical
form, we encode the constraint that the probability of
the label change decreases with the distance by adding
a user term Eu(p) to Eq. 2 as:

E(lp) = Ed(p) + αEs(p) + βEt(p) + γEm(p) + κEu(p),

where Eu(p) is defined as:

Eu(p) = |lp − l′p|
argmins||xp − xs||

r
,

where |lp − l′p| is an indicator of label change from
the original label l′p to the new label lp of the pixel
p, ||xp − xs|| is the distance between the current pixel

p to the pixel s under the strokes drawn by the user,
xp and xs denote the positions of the pixels p and s,
and r is a user-defined parameter to control the range
of the user attention. By encoding the constraint in
the observations, the system successfully prevents the
over-expansion and over-shrinkage problems at once.

5. Results

(a) (b)

Fig. 5 The walking bear is occluded by the tree trunk. (a)
Without motion smoothness, it is hard to deal with the occlusion.
(b) Combined the motion smoothness with the color smoothness,
the result improves much.

In this section, we show some experimental results
to compare with previous methods. To visualize the re-
sults, red color is used to blend with the foreground and
blue color is used to blend with the background. Note
that in the results presented in this section, strokes are
drawn on the first frame only, which is a quite challeng-
ing task for previous methods.

Fig. 1 shows a comparison of the segmentation re-
sults of a walking bear video. Fig. 1(b) shows the result
with smaller color smoothness weightings α and β and
Fig. 1(c) shows that with larger ones by using Eq.1 of
[8] and [12]. In contrast, with the motion smoothness
term shown in Eq. 2 we proposed, the result improves
much as shown in Fig. 1(d). Due to the benefits of the
motion smoothness term, even the walking bear is oc-
cluded by the tree trunk as shown in Fig. 5, we can still
obtain an acceptable result as shown in Fig. 5(b).

Fig. 6∼9 show other comparisons of our method
and previous ones by some different videos. In Fig. 6,
Fig. 6(b) shows a sequence that has some wrongly la-
beled background between the keystrokes, because the
dark color between the keystrokes is similar to some
of the background colors. Of course, one may raise
the weighting of the color smoothness term to solve
the problem, but since there is a strong data term
penalty, the weighting of the color smoothness term
should be raised to a rather huge amount to completely

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(a) (b)

(c) (d)

Fig. 6 The comparison of the segmentation results of a mov-
ing keyboard video. In this video, the white keyboard is dragged
on a white table. (a) One frame of the original video. (b) Us-
ing smaller color smoothness weighting, there are some errors
between the keyboard buttons. (c) Using greater color smooth-
ness weighting, there are some foreground regions merged into
the background. (d) Our result.

fix the problem. Before that, the overly strong color
smoothness term introduces other artifacts. As shown
in Fig. 6(c), some portions of the foreground, i.e. key-
board has been wrongly labeled to the background,
since the colors of the table and the keyboard are simi-
lar. By only adjusting the color smoothness term, they
have the tendency to be labeled as the same value. In
contrast, if the motion information could be utilized, it
would be relatively easy to segment the keyboard with
the background as shown in Fig. 6(d).

Similar to the above case, Fig. 7(b) shows another
example that the segmentation could not be done with
color information alone, since the background color is
too complex and there are similar color between the
car and the background colorful leaflets. As the back-
ground has some regions similar to the foreground, it
is usually the case that the regions would be wrongly
labeled as the foreground. If the weighting of the color
smoothness term is raised to solve the problem, it in-
troduces other artifacts. As the foreground, i.e. the toy
car moves to the right, the background regions that
have similar color to the toy car would be ”merged”
as the foreground, by using the preference with greater
weighting of the color smoothness term, as shown in
Fig. 7(c). In this video, during the car running, the
background colorful leaflets also move to several dif-
ferent directions since the leaflets are not fixed on the
table. Since the motion patterns are quite different
for the foreground and background, even some fore-
ground and background regions have similar colors and
the background is also unstable, we can still obtain an

(a) (b)

(c) (d)

Fig. 7 The comparison of the segmentation results of a running
car video. In this video, the car is running on several colorful
leaflets. Noted that yellow circles are imposed to show the area
that has major difference. (a) One frame of the original video. (b)
Using smaller color smoothness weighting, there are some errors
on the leaflets. (c) Using greater color smoothness weighting, a
part of the leaflets is labeled as the foreground. (d) Our result.

acceptable result as shown in Fig. 7(d).

(a) (b)

(c) (d)

Fig. 8 The comparison of the segmentation results of a sitting
toy video. In this video, the toy is static but the camera moves.
Noted that yellow circles are imposed to show the area that has
major difference. (a) One frame of the original video. (b) Using
smaller color smoothness weighting; some parts of the chair are
labeled as the foreground. (c) Using greater color smoothness
weighting, a part of the toy is labeled as the background. (d)
Our result.

In Fig. 8, the toy is sitting on a wicker chair, the
environment is static but the camera is moving. Al-
though the difference of the motion patterns between

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
7

the foreground and background is not very much, the
result is still improved much by integrating the mo-
tion smoothness term. Fig. 8(b) shows that with small
color smoothness weighting, the regions with similar
dark color as the background, such as eye, belt and
mouth, would be wrongly labeled as the background.
In contrast, the region on the left hand (in the right
side of the image) in some frames is ”merged” into the
background as shown in Fig. 8(c). Fig. 9(b) shows that
with small color smoothness weighting, in the condition
that the black side of the video has not been drawn with
the background stroke, it would be labeled as the fore-
ground, since its color is similar with the foreground
color model. However, if the system uses large color
smoothness weighting, some artifacts may be occurred,
such as the result shown in Fig. 9(c), where some of the
regions on the head of the fish have been ”merged” into
the background. In contrast, our results are shown in
Fig. 8(d) and Fig. 9(d).

(a) (b)

(c) (d)

Fig. 9 The comparison of the segmentation results of a swim-
ming fish video. (a) One frame of the original video. (b) Using
smaller color smoothness weighting, there are some errors in both
the foreground and background. (c) Using greater color smooth-
ness weighting, a part of the fish is merged into the background.
(d) Our result.

The ratios of correctly segmented pixels for each
result are summarized in Table 2 by comparing the
results of our and previous methods to the manually
labeled ground truth as shown in Fig. 10. Although
the differences are moderate, by observing the figures,
we can infer that the differences are appeared in the
regions that attract more user attention, such as the
border between foreground and background.

Note that the system is not aim at solving par-
tial alpha. However, as long as a relatively accurate
segmentation could be achieved, it is straight forward
to dilate the region in the boundary binary segmenta-
tion to produce the trimap, which is usually required

Fig. 10 Several frames of the manually labeled ground truth
of walking bear.

filename proposed method previous method

walking bear 0.971 0.963
moving keyboard 0.984 0.972
running car 0.987 0.974
sitting toy 0.946 0.922
swimming fish 0.965 0.907

Table 2 The ratio of correctly segmented pixel.

by most matting processes. Hence, by employing the
state-of-the-art matting techniques, such as Coherent
Matting [17], we could also have the result of video
matting.

The system is implemented in C++, compiled un-
der GNU G++ 4.3 with maximal optimize level, and
tested under a Linux environment (Ubuntu 8.04) with a
laptop PC that equipped with a 3.2 GHz CPU and 3GB
RAM. The computation costs about 1 or 2 minutes for
a video with 20 frames, which does not include the cal-
culation of the optical flow and its refinement. Since
the content of the video will not be changed during the
video segmentation process, the optical flow calcula-
tion and its refinement are performed as an offline pre-
processing. Table 3 lists the details of the performance
and dimension information for each test video. For
these cases, we should note that the user time is con-
siderably small, since there are only few strokes drawn
on the first frame only.

video dimension running time (sec.)

walking bear 480 × 270 77.190
moving keyboard 480 × 360 84.831
running car 480 × 360 77.033
sitting toy 324 × 244 86.005
swimming fish 504 × 336 104.728

Table 3 The statistics of running time and dimensions.

Although the motion information works consider-
ably well in the clips that shot with a fixed camera,
for the clips that shot with a non-fixed camera, it be-
comes inaccurate to use even with the above mentioned
weighted-averaging.

Fig. 11 shows an example that is shot with an un-
stable camera. The irregular of the camera produces

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 11 An instance that hard to use motion information for
segmentation: shot with unstable or irregular camera motion

Fig. 12 Another instance that hard to use motion information
for segmentation: complex motion inside the foreground object

Fig. 13 The system may fail in the first few frames after the
disocclusion occurs

noisy optical flow information, which is difficult to be
used since it has no clear separation between the fore-
ground and background. While actually there does
have such separation in the motion pattern from the
train to the background.

It is also hard for complex motion. Fig. 12 shows
such a case. As the fish move upward as a non-rigid
body, there has quite complex motion patterns between
each part of its body, which not only produces some
noise during the optical flow calculation process, but
also encodes motion smoothness cost to prevent the
body to be labeled as a whole.

Besides, whenever the disocclusion occurs, in the

first few frames, the foreground may be wrongly labeled
as the background, since the region of the disocclusion
regions is rather small. In this situation, for a compa-
rably high smoothness term, which maybe necessary in
global, may cause the smoothness cost, rather than the
data cost to dominate the energy function minimization
as shown in Fig. 13.

6. Conclusion and Future Work

A new video segmentation method is proposed in this
paper. The video segmentation problem is encoded into
a 3D temporal-spatial graph that can be solved by the
graph cuts algorithm. Besides the traditional spatial
color smoothness and temporal coherence, we also en-
code the motion smoothness into the formulation. In
many cases, the system with motion smoothness out-
performs the traditional one which takes only color in-
formation into account, even if the foreground moving
object is occluded or the difference of the foreground
and background movement is considerably small. Be-
sides this, we also provide a propagated-stroke-based
user interface, which allows the user to modify the video
segmentation result interactively and intuitively.

Although the motion information works well in the
video clips shot with a fixed camera or the moving cam-
era with stable movement, for the video clips that shot
with an unstable camera or by the camera with irreg-
ular camera motion, the motion information becomes
inaccurate to use, since the irregular motion of the cam-
era produces noisy optical flow information, which is
difficult to use for separating the foreground and back-
ground. To stabilize the video clips by using methods
such as [16][18] before segmentation may be a possi-
ble solution to the problem. It is also difficult if the
foreground object has complex or irregular motion pat-
terns, such like a rapid swimming goldfish. We could
try to derive more sophisticated optical flow average
algorithm to improve the quality of the motion infor-
mation.

By integrating the motion information into the
video segmentation, we can deal with the occlusion sit-
uation such as the case shown in Fig. 5. However, first
few frames of the disocclusion might fail, since the com-
parably small disoccluded region may be smoothed by
the color smoothness term, while the motion informa-
tion is not accurate enough to produce a correct pref-
erence for motion segmentation. Finding a more elabo-
rated mechanism for temporal-spatial-adapted param-
eter to deal with such a complicated case would be part
of our future work.

We are also considering to investigate the user be-
havior for the user to draw the strokes by machine
learning approaches. If we could mimic the pattern
ordinary user draw the strokes. A much accurate fully
automatic image/video segmentation framework may
be proposed. Finally, it would be interesting to find

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
9

features other than color and motion to separate the
foreground and background.

7. Acknowledgement

This paper was partially supported by National Science
Council of Taiwan under NSC97-2622-E-002-010, and
also by the Excellent Research Projects of the National
Taiwan University under NTU97R0062-04.

References

[1] A. Blake and M. Isard, Active Contours, Springer, 1998.
[2] M. Gleicher, “Image snapping,” ACM SIGGRAPH 1995

Conference Proceedings, pp.183–190, 1995.
[3] E.N. Mortensen and W.A. Barrett, “Intelligent scissors for

image composition,” ACM SIGGRAPH 1995 Conference
Proceedings, pp.191–198, 1995.

[4] T. Mitsunaga, T. Yokoyama, and T. Totsuka, “Autokey:
Human assisted key extraction,” ACM SIGGRAPH 1995
Conference Proceedings, pp.265–272, 1995.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol.23, no.11,
pp.1222–1239, 2001.

[6] V. Kolmogorov and R. Zabin, “What energy functions
can be minimized via graph cuts?,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol.26, no.2,
pp.147–159, 2004.

[7] Y. Boykov and V. Kolmogorov, “An experimental compar-
ison of min-cut/max-flow algorithms for energy minimiza-
tion in vision,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.26, no.9, pp.1124–1137, 2004.

[8] Y. Li, J. Sun, and H.Y. Shum, “Video object cut and paste,”
ACM Transactions on Graphics, vol.24, no.3, pp.595–600,
2005. (SIGGRAPH 2005 Conference Proceedings).

[9] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping,”
ACM Transactions on Graphics, vol.23, no.3, pp.303–308,
2004. (SIGGRAPH 2004 Conference Proceedings).

[10] C. Wang, Q. Yang, M. Chen, X. Tang, and Z. Ye, “Progres-
sive cut,” ACM Multimedia 2006 Conference Proceedings,
pp.251–260, 2006.

[11] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: in-
teractive foreground extraction using iterated graph cuts,”
ACM Transactions on Graphics, vol.23, no.3, pp.309–314,
2004. (SIGGRAPH 2004 Conference Proceedings).

[12] J. Wang, P. Bhat, R.A. Colburn, M. Agrawala, and M.F.
Cohen, “Interactive video cutout,” ACM Transactions on
Graphics, vol.24, no.3, pp.585–594, 2005. (SIGGRAPH
2004 Conference Proceedings).

[13] J. Xiao and M. Shah, “Motion layer extraction in the pres-
ence of occlusion using graph cuts,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol.27, no.10,
pp.1644–1659, 2005.

[14] X. Bai and G. Sapiro, “A geodesic framework for fast in-
teractive image and video segmentation and matting,” Pro-
ceedings of 2007 IEEE International Conference on Com-
puter Vision, pp.1–8, 2007.

[15] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High
accuracy optical flow estimation based on a theory for warp-
ing,” Proceedings of 2004 European Conference on Com-
puter Vision, pp.25–36, 2004.

[16] B.Y. Chen, K.Y. Lee, W.T. Huang, and J.S. Lin, “Cap-
turing intention-based full-frame video stabilization,” Com-
puter Graphics Forum, vol.27, no.7, pp.1805–1814, 2008.

(Pacific Graphics 2008 Conference Proceedings).
[17] H.Y. Shum, J. Sun, Y. Li, and C.K. Tang, “Pop-up light

field: An interactive image-based modeling and render-
ing system,” ACM Transaction of Graphics, vol.23, no.2,
pp.143–162, 2004.

[18] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.Y. Shum,
“Full-frame video stabilization with motion inpainting,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol.28, no.7, pp.1150–1163, 2006.

Chung-Lin Wen received the B.S. degree in Information
Management and the M.S. degree in Computer Science and In-
formation Engineering from National Taiwan University, Taipei,
in 2006 and 2009, respectively. He was a visiting graduate stu-
dent to The University of Tokyo from 2008 to 2009. His research
interests include computer graphics, computer vision, computa-
tional photography and human-computer interaction.

Bing-Yu Chen received the B.S. and M.S. degrees in Com-
puter Science and Information Engineering from the National
Taiwan University, Taipei, in 1995 and 1997, respectively, and
received the Ph.D. degree in Information Science from The Uni-
versity of Tokyo, Japan, in 2003. He is currently an associate
professor jointly affiliated with the Department of Information
Management, Department of Computer Science and Information
Engineering, and Graduate Institute of Networking and Multime-
dia, of the National Taiwan University, and is a visiting associate
professor in the Department of Computer Science of The Uni-
versity of Tokyo. His research interests are mainly for computer
graphics, geometric modeling, image and video processing, and
human-computer interaction. He is a member of ACM, ACM
SIGGRAPH, Eurographics, IEEE, IEICE, and IICM.

Yoichi Sato is an associate professor jointly affiliated with the
Graduate School of Interdisciplinary Information Studies, and
the Institute of Industrial Science, at the University of Tokyo,
Japan. He received the BSE degree from the University of Tokyo
in 1990, and the M.S. and Ph.D. degrees in robotics from the
School of Computer Science, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, in 1993 and 1997 respectively. His research
interests include physics-based vision, reflectance analysis, image-
based modeling and rendering, tracking and gesture analysis, and
computer vision for HCI.

