
Cloning Skeleton-driven Animation to Other Models

Wan-Chi Luo† Jian-Bin Huang† Bing-Yu Chen‡ Pin-Chou Liu†

National Taiwan University
†{maggie, azar, toby}@cmlab.csie.ntu.edu.tw ‡robin@ntu.edu.tw

Abstract-3D animation has been manipulated
widely in movies and video games nowadays. To
make a 3D model move, traditionally, requires ani-
mators’ efforts to edit the key poses of the model. It
is a time-consuming task, especially when dealing
with an imposing scene such as those full of different
animals or soldiers. In this paper, we propose an ef-
ficient technique to clone skeleton-driven animation
data from one to another model, including skeleton,
binding weights and key-frame poses. With the pro-
posed technique, users will only need to specify few
common features between the source model and the
target ones, and our system can transfer the anima-
tion automatically. The cloned animation can also be
refined by adjusting either the cloned skeleton, bind-
ing weights, or key poses. In these settings, we can
speed up the process of making crowd motion se-
quences and enable the reuse of animation.

Keywords: Computer Animation, Skeleton Transfer,
Animation of Crowds, Consistent Parameterization,
Content Creation

1. Introduction

Models in movies or games usually have skele-
tons for easier motion editing, and are referred
to ”animatable models” since they carry animation
data, whereas those without animation data will be
called ”static models” in this paper. Animators bring
3D static models to life by making plausible and life-
like motions, and one of the common solutions is to
build a skeleton, to set its binding weights with
neighboring vertices, and then editing the key-poses.

Imagine there are more than one hundred dancers
dancing uniformly. To generate such animation with
various 3D body shapes, it is necessary to repeat the
editing process over and over again, even for identi-
cal motion sequences. There are many researches fo-
cus on ”motion retargeting” or ”transferring motion
captured data”, but most of them need to define the
skeleton and binding weights of the target model be-
fore transferring the source model’s motion. Con-
structing the same skeleton structures for each
dancer may be easy, but setting the binding weights
is really a tedious task and may cost a lot of time
even for experienced animators. Therefore, we pro-
pose an efficient technique which can clone a skele-

ton-driven animation from source model to target
ones easily such that users will be able to generate
similar animation data quickly, and refine it later if
necessary.

Figure 1. The motion of the dog model is trans-
ferred to the cat model.

In other words, if we have a running dog model

and a static standing cat model, the result of our sys-
tem will be a running cat model, as shown in Figure
1. Furthermore, we can not only clone the animation
between two models with similar topologies, but also
the models with different topologies, for example a
monkey and a cola can.

The basic idea is that we have to construct a co-
herent skeleton structure for the target model first.
Once we can derive the same skeleton structure and
clone the animation data, the key-frames can be
transferred directly. Because the target model only
comprises mesh information, we have to disperse the
skeleton information to nearby vertices on the mesh.
As the descriptions in [3], we then utilize the corre-
spondence of all vertices between the two models to
reconstruct the skeleton. Moreover, the binding
weights and texture information are also generally
saved as the attributes of the vertices, so we can
clone this information through the correspondence
too.

One of the common ways to find the correspon-
dence for all vertices between two models is surface
parameterization. With this technique, users need to
specify common features between two models, and
to dissect both of the two models into homologous
patches manually. We provide a user-friendly inter-
face like other 3D-morphing programs to accomplish
this control process easily. In order to transfer the
skeleton data, we represent each joint of the skeleton
as two vertices, or ”markers”, which form a numeri-
cal relations to the joint. Due to the consistent corre-
spondence, we can find those markers on the target
model and reconstruct the skeleton of the same struc-

ture. As soon as the animation data is transferred,
our system can clone the animation from the source
model to the target one.

Our major contribution is that we facilitate users
by speeding up the process of making similar motion
sequence for crowds, and by enable the reuse of ani-
mation data. Target models do not need to pre-define
their skeletons and binding weights before cloning
animation. We can transfer these two important at-
tributes to target models automatically after specify-
ing common features of source and target models.

2. Related Work

In this paper, we make users to dissect models
into patches manually, and they also need to specify
some common features in order to find the consistent
correspondence. Each relative pair of patches is pla-
nar parameterized and aligned according to those
common features. After overlaying the aligned em-
beddings, the correspondence of all vertices can be
found. In our experiments, we can observe when the
patch is more like a disk, when the planar parame-
terization has less fold-over problem, and when the
correspondence is more correct.

Since an arbitrary 3D model may be closed or
nonclosed, works have been published, discussing
how to decompose a model into patches. Eck et al. [5]
used the Voronoi diagrams and Delaunay triangula-
tions to partition a model into several parts, but parti-
tioning two models consistently is not easy because
the sites are selected randomly. As for Normal
Meshes, Guskov et al. [12] used a mesh simplifica-
tion method presented by Garland and Heckbert [9]
to create a base domain for only one model. Lee et al.
[14] provided a 3D morphing method, with which
users first manually assign the corresponding fea-
tures of the source and target models, and then using
MAPS (Multi-resolution Adaptive Parameterization
of Surfaces) [15], the independent coarse base do-
main can be found through a simplification hierarchy.
The parameterizations can thus be established on the
merged base domain. The more the two models are
dissimilar, however, the more user control will be
needed to solve the correspondence problem. Katz
and Tal [13] proposed an algorithm to dissect a
model into meaningful patches by utilizing the com-
bination of geodesic distance and angular distance.
By applying maximum flow algorithm, they can also
smooth the boundaries between patches. However,
the decomposing algorithm was not proposed to find
decompositions for compatible model, and the base
domain founded by this method may not be consis-
tent.

Praun and Hoppe [19] provided an algorithm per-
forming consistent mesh parameterizations for sev-
eral models. To get the consistent mesh parameteri-
zations, the users have to specify a common base
domain and manually map it to all of the models first.

Then, the parameterizations can be accomplished by
subdividing the base domain for separate models.
Since cloning animation needs more precise corre-
spondence for all vertices, especially the features,
adopting the common base domain is hard to find for
all cases because the numbers of features are diverse.
This problem can be solved by constructing a com-
mon base domain for each pair of the source and tar-
get models, but may requires more efforts of users.

In the topic of planar parameterization, barycen-
tric mapping, described by Tutte [23], defined every
internal node as the baryceter of its neighbors. The
shape of the mesh does not influence the position of
the internal node, since the mesh connectivity is the
only concern in this method. Floater [6] suggested a
shape-preserving method to preserve chord length
and barycentricity by using the combination of bary-
centric mapping, where each internal node is a con-
vex combination of its neighbors. Eck et al. [5] pro-
posed a discrete harmonic map method, which pre-
served aspect ratio of triangles. Moreover, Shlafman
et al. [21] compared parameterization methods
of ”barycentric”, ”shape-preserving”, and ”har-
monic” according to various distortion measures,
and ”harmonic mapping” emerged minimum distor-
tion in their experiments. But when the patch is dis-
similar to a disk, harmonic mapping resulted in fold-
over severely. Desbrun et al. [4] and Lévy et al. [16]
proposed different methods to compute discrete con-
formal mapping. With their technique, fold-over-free
embeddings can be generated if the patch is not simi-
lar enough to a disk. To resolve the fold-over prob-
lem, we incorporate a spring method, and will dis-
cuss it later.

There are also many other studies focusing on
spherical parameterization, which is an approach that
can deal only with models that are genus-zero. One
of the advantages of this method is that models do
not need to be decomposed. Alexa [1] suggested a
spring method to map a model onto a unit sphere, but
the method only concerns about the connectivity of
the mesh and causes high distortions. Then, Gotsman
et al. [11] mapped a simple 3D model onto a unit
sphere by solving a quadratic system. Praun and
Hoppe [19] also proposed a coarse-to-fine algorithm
to embed a model onto a unit sphere robustly, but the
base domain of the model will limit the possibility of
feature alignment.

In the topic of feature alignment, Alexa [1] pro-
posed a method to align features on a unit sphere. It
cannot guarantee, however, that those features can
align to designated position. And finally, for feature
alignment on planar embedding, many 2D image
warping algorithms are proposed. Most of the studies
used [8] to prevent the fold-over problem, and we
also adopt this method to align features on embed-
dings. Alexa [2] and Floater and Hormann [7] pre-
sented exhaustive surveys, respectively.

Topic of transferring animation becomes impor-
tant nowadays. Summer and Popović [22] proposed
a good method to transfer deformation between tri-
angle meshes. After getting the mapping between the
triangles of the source and target models, they com-
puted the affine transformation that encoded the
ideal change of orientation, scale, and skew of each
triangle. Then deformation transfer solved an opti-
mization problem to maintain consistency.

3. Animation Data

In order to clone the animation sequence of a
source animatable model to a target static model, we
have to transfer all of the animation data, including
binding weights, skeleton, and key-frame poses.
There are more details can be founded in [17] and
[18].

These animation data of source model can be mo-
tion captured data or constructed by animators. Gen-
erally, many studies can apply motion captured data
to other characters. However, these studies need to
pre-design the skeleton and binding weights of the
target model. Since we know that skinning method
may cause artifacts when twisting and bending, ani-
mators may design the skeleton and binding weights
purposely, such as adding more extra joints, to pre-
vent these artifacts. Both of them depend much on
animators’ experiences.

Moreover, although there are some powerful tools
such as ”Maya” provide the function to paint the
binding weights for each joint on the mesh, it is
really a tedious work. Since our method can transfer
both the skeleton and binding weights to the target
models. Users do not need to preprocess the target
models except marking some common features.

4. Consistent Surface Parameterization

Because the binding weights are saved as a ver-
tex’s attributes, we need to get the correspondence of
all the vertices between the source and target models.
We use a planar parameterization method to find the
correspondence of the two models.

4.1. Discrete Conformal Mapping

First, the user needs to assign the correspondence
by partitioning each model into the same number of
patches. In our system, the boundary of a patch can
be represented by several vertices (i.e., called an-
chors) in sequence, and then it can be obtained by
calculating the shortest path between two anchors on
the mesh. After dissecting, since each pair of patches
is disk-like, we mapped them to a plane by discrete
conformal mapping [4]. The conformal mapping re-
sults are shown in Figure 2. Their algorithm is to
solve a sparse linear system, which minimizes the

combination of Chi Energy and Dirichlet Energy on
triangulations.

Figure 2. We dissect the dog and cat models
into two correspondent patches, respec-
tively. The right side rectangles show their
conformal maps.

4.2. Relax Conformal Map

Figure 3. If a vertex is detected as a fold-
oververtex, those vertices inside an effect
radius r are needed to be relaxed.

 However, if the patch of the model is not very
similar to a disk, a conformal map without fold-over
may not be found. Therefore, we combine the spring
method described in [2] to relax those fold-over ver-
tices after conformal mapping process. As shown in
Figure 3, after making the conformal map, we detect
which vertex of the conformal map is fold-over, and
then each vertex vi insides the effect radius r of the
fold-over vertex needs to be performed spring re-
laxation. Moreover, each vertex vi will move to

()i j i j
i

i j

v v v v
p c

v v

− −
= ⋅

−

∑
∑

,

where vj is the neighbor of vi, and c is a constant (ex-
perimentally c = 2). The longer edge will be short-
ened so that the vertex vi will be put in the center of
its 1-ring neighborhood. This relaxation will not be
terminated until no fold-over vertex is found. Owing
to this relaxation algorithm does not concern the
shape of the original mesh, the radius should not be
too large and we only use it to solve the fold-over

problem. Figure 4 shows the difference of using
spring relaxation or not.

(a) (b)

Figure 4. (a) An original conformal map. (b)
A conformal map with relaxation.

4.3. Feature Alignment

We overlay each pair of patches’ embeddings to
find the correspondence of all vertices. Cloning ani-
mation to other models needs more precise mapping
between all vertices than 3D morphing. If the corre-
spondence is not precise enough, the binding
weights will be transferred incorrectly and the de-
formation of the target model will be strange. On the
purpose of computing better correspondence be-
tween each pair of homologous patches, we align the
important features on the conformal map.

After creating the fold-over free conformal map
for each pair of patches, the user needs to specify the
common features of the source and target models
manually or by other automatic or semi-automatic
algorithms. In this paper, we use a fold-over free
warping scheme [8] to align those features. Many re-
searches in mesh morphing also use this method to
align features on planar embeddings. It deserves to
be mentioned that we do not need to change the edge
connection when fold-over occurs, because we only
want to retrieve the correspondent relation of the
vertices.

4.4. Correspondence Representation

Given two aligned embeddings, we overlay them
to find the correspondence of all vertices between
the two models. There is no need to merge the faces,
edges, and vertices as done in some traditional ap-
proaches of 3D metamorphosis, while we only need
to know each vertex of the source model are laid at
which face of the target model and its numerical re-
lation. Assume that each vertex p of the target
model’s embedding lies in a triangle of the source
model’s embedding with 2D coordinates q1, q2, and
q3. The relation of p, denoted by R(p), can be ex-
pressed using the barycentric coordinate:

2 3 1 3 1 2
1 2

1 2 3 1 2 3 1 2 3

()
pq q q pq q q p

3R p q q
q q q q q q q q q
∆ ∆ ∆

q= × + × + ×
∆ ∆ ∆

where ∆q1q2q3 denotes the area of the triangle con-
sists of vertices q1, q2, and q3.

5. Animation Cloning

In order to clone the animation of the source
model to the target one or ones, we have to construct
the same skeleton structure. Since the target model
only has the mesh information, we have to disperse
each joint position to vertices close to it. Allen et al.
[3] proposed a method to transfer skeleton data.
They chose two or three points on the mesh as mark-
ers for each joint, and then calculated the local posi-
tions of these markers in the associated joint’s coor-
dinate. As a result of the consistent parameterization,
the corresponding positions of these markers on the
other mesh can be derived, and the skeleton poses
and bone lengths can be constructed using inverse
kinematics. We utilize this method to re-construct
the same structure of skeleton for the target static
model.

Because we deal with 3D model with meshes in-
stead of articulated figure, we solve, mainly, the
problem of transferring animation data. The anima-
tion data including skeleton and binding weights
generated by our system can also be imported
into ”Maya” for further refinements.

5.1. Skeleton Transfer

After surface parameterization, for each joint in
the skeleton, we choose the nearest vertex to the
joint as a marker A on the source model mesh. A 3D
vector forming marker A to associated joint can in-
tersect the source model mesh, and we call this inter-
section marker B. Markers A and B have a numerical
relation to the associated joint. As shown in Figure 5,
assume v1 is marker A and v2 is marker B, joint J0
can be represented as 0 1 2J vα β v= ⋅ + ⋅ , where

2 0 1 2 1 0 1 2/ , /v J v v v J v vα β= − − = − − .

Figure 5. v1 and v2 are used to record J0,
where v1 is the nearest vertex on the mesh,
and v2 is the intersect point of the mesh by
v1J0.

(a) (b)

Figure 6. The skeleton transformation result
shown in ”Maya”. (a) The skeleton of the
dog is constructed by an animator, and (b)
the skeleton of the cat is constructed by our
system automatically.

We record marker A, marker B, α, and β to repre-
sent the associated joint information. According to
the consistent parameterization, we can find relative
marker A’ and marker B’ on the target model mesh.
Afterward, the relative joint can be computed by cal-
culating ' 'A Bα β⋅ + ⋅ . Following calculating all
joint positions in the target model, we can clone the
joint connectivity as the source model’s skeleton
structure. Figure 6 shows the result of the transferred
skeleton from a dog to a cat.

There are, however, some limitations, resulted
from that we only choose two markers to record the
joint’s position, while marker A is defined as the ver-
tex closest to the associated joint.

5.2. Binding Weights Transfer

Rely on the correspondence mentioned in Section
4.4, vertex p’s binding weight can also be retrieved
by calculating the combination of binding weights of
q1, q2, and q3.

6. Result

As shown in Figure 1, the source animatable
model is a dog with a skeleton and motion data, and
the target static model is a cat that only has mesh in-
formation, where the two models contain, respec-
tively, 8,136 and 5,400 triangles. To clone 20 key-
frame poses and skeleton data from the dog model to
the cat takes about 2 minutes on a desktop PC with
an Intel Pentium 4 3GHz CPU, and to specify the
correspondence of 40 features between the two mod-
els costs 10-15 minutes through our user interface.
This is much faster than traditional methods to clone
animation, and is more perceptual for people who are
new to creating animation.

Utilizing our system, an animation sequence can
be reapplied to different models which only have ge-
ometry information. To perform the surface parame-
terization including relaxation and alignment for the
dog model and the cat model takes 1.546 and 1.548
seconds, respectively. Creating the correspondence
for all of the vertices needs 11.328 seconds and re-
constructing skeleton for the target model costs

0.141 seconds. Figures 7 and 8 show other results
created by our method.

Figure 7. The monkey is the source model,
and the gorilla and the cola can are the tar-
get models. The monkey and the gorilla have
1,884 and 5,454 triangles, respectively, and
have 53 common specified features. The
cola can has been specified 20 common fea-
tures with the source model.

Figure 8. The dancing motion sequence of a
fat man model is cloned to the girl and the
boy models, respectively. They have 6,848,
928, and 4,356 triangles and 41 common fea-
tures are specified among them.

7. Conclusions and Future Work

An efficient method for cloning animation from
an animatable model to a static one is presented in
this paper. The vertex-wise correspondence between
the two models is derived from their planar surface
parameterizations with feature alignment. Hence, a
model’s motion, color, texture, skeleton, and binding
weights can be transferred to other ones, and an ani-
mation sequence can be reused to different models,
even the target models only have geometry informa-
tion. Therefore, through our method, the time-costly
routines that produce the skeleton, binding weights,
and the same animation sequence for target models
can be reduced. Moreover, the target models with the
transferred animation data can be imported
into ”Maya” for later refinement if necessary. In our
experiments, the result generated by our system

without any refinement is still adoptable, especially
is useful in video games, background crowds, and
animations that do not require very high-quality de-
formations.

Currently, the user must choose a ”proper” pose
of the source model from an animation sequence be-
fore performing our algorithm, where the ”proper”
means the pose of the source model is similar to that
of the target static model. If the source and target
models are in different poses, for example, the
source model is standing but the target one is sitting,
the cloning results may be a little strange. One of our
future works is to adjust the initial pose automati-
cally to let the source and target models be the same
pose before cloning the animation sequence.

To transfer the joints of the source model, we just
recorded a joint by only two vertices. Although the
result shows this simple method works well in al-
most all cases, using more vertices to record a joint
can also be considered to enhance the precision.

We can discovery that when the source and target
models have different proportion of limbs and in
some animation sequences a part of the target model
will intersect itself. This problem also occurs in mo-
tion capturing. Gleicher [10] presented a space-time
constraint method for 3D models. This method fo-
cused on adapting the motion of one articulated fig-
ure to another with identical structure but different
segment lengths. They assume that the configuration
of an articulated figure is specified by a hierarchical
joint tree. Besides, when the two models’ shapes dif-
fer very much, self-intersection also will occur. We
should pay more efforts to solve the mesh intersec-
tion problem in the future.

7. Acknowledgements

The work was supported in part by the National
Science Council of Taiwan under Contracts NSC93-
2213-E-002-084-.

References

[1] M. Alexa. Merging polyhedral shapes with scattered

features. The Visual Computer, 16(1):26–37, 2000.
[2] M. Alexa. Recent advances in mesh morphing. Com-

puter Graphics Forum, 21(2):173–196, 2002.
[3] B. Allen, B. Curless, and Z. Popović. The space of

human body shapes: Reconstruction and parameteri-
zation from range scans. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2003),
22(3):587–594, 2003.

[4] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic
parameterizations of surface meshes. Computer
Graphics Forum (Proceedings of Eurographics
2002), 21(3):209–218, 2002.

[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbery, and W. Stuetzle. Multiresolution analysis
of arbitrary meshes. In Proceedings of ACM SIG-
GRAPH 1995, pages 173– 182, 1995.

[6] M. Floater. Parameterization and smooth approxima-
tion of surface triangulations. Computer Aided Geo-
metric Design, 14(3):231–250, 1997.

[7] M. S. Floater and K. Hormann. Surface parameteri-
zation: a tutorial and survey. In Proceedings of Mul-
tiresolution in Geometric Modelling 2003, 2003.

[8] K. Fujimura and M. Makarov. Foldover-free image
warping. Graphical Models and Image Processing,
60(2):100– 111, 1998.

[9] M. Garland and P. S. Heckbert. Surface simplifica-
tion using quadric error metrics. In Proceedings of
ACM SIGGRAPH 1997, pages 209–216, 1997.

[10] M. Gleicher. Retargeting motion to new characters.
In Proceedings of ACM SIGGRAPH 1998, pages 33–
42, 1998.

[11] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of
spherical parameterization for 3d meshes. ACM
Transactions on Graphics (Proceedings of SIG-
GRAPH 2003), 22(3):358– 363, 2003.

[12] I. Guskov, K. Vidimce, W. Sweldens, and P.
Schr¨oder. Normal meshes. In Proceedings of ACM
SIGGRAPH 2000, pages 95– 102, 2000.

[13] S. Katz and A. Tal. Hierarchical mesh decomposi-
tion using fuzzy clustering and cuts. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH
2003), 22(3):954–961, 2003.

[14] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder.
Multiresolution mesh morphing. In Proceedings of
ACM SIGGRAPH 1999, pages 343–350, 1999.

[15] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar,
and D. Dobkin. Maps: Multiresolution adaptive
parameterization of surfaces. In Proceedings of ACM
SIGGRAPH 1998, pages 95–104, 1998.

[16] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least
squares conformal maps for automatic texture atlas
generation. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2002), 21(3):362–371, 2002.

[17] J. P. Lewis, M. Cordner, and N. Fong. Pose space
deformations: A unified approach to shape interpola-
tion and skeleton-driven deformation. In Proceed-
ings of ACM SIGGRAPH 2000, pages 165–172,
2000.

[18] A. Mohr and M. Gleicher. Building efficient, accu-
rate character skins from examples. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH
2003), 22(3):562–568, 2003.

[19] E. Praun and H. Hoppe. Spherical parameterization
and remeshing. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2003), 22(3):340–349,
2003.

[20] E. Praun, E., W. Sweldens and P. Schröder, Consis-
tent Mesh Parameterizations. In Proceedings of ACM
SIGGRAPH 2001, 179-184, 2001

[21] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of
polyhedral surfaces using decomposition. Computer
Graphics Forum (Proceedings of Eurographics
2002), 21(3):219–228, 2002.

[22] R. W. Sumner and J. Popović. Deformation transfer
for triangle meshes. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2004), 23(3):399–405,
2004.

[23] W. T. Tutte. How to draw a graph. Proceedings of
the London Mathematical Society, 13(3):743–768,
1963

	1. Introduction
	2. Related Work
	3. Animation Data
	4. Consistent Surface Parameterization
	4.1. Discrete Conformal Mapping
	4.2. Relax Conformal Map
	4.3. Feature Alignment
	4.4. Correspondence Representation

	5. Animation Cloning
	5.1. Skeleton Transfer
	5.2. Binding Weights Transfer

	6. Result
	7. Conclusions and Future Work
	7. Acknowledgements
	References

