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Abstract-3D animation has been manipulated 
widely in movies and video games nowadays. To 
make a 3D model move, traditionally, requires ani-
mators’ efforts to edit the key poses of the model. It 
is a time-consuming task, especially when dealing 
with an imposing scene such as those full of different 
animals or soldiers. In this paper, we propose an ef-
ficient technique to clone skeleton-driven animation 
data from one to another model, including skeleton, 
binding weights and key-frame poses. With the pro-
posed technique, users will only need to specify few 
common features between the source model and the 
target ones, and our system can transfer the anima-
tion automatically. The cloned animation can also be 
refined by adjusting either the cloned skeleton, bind-
ing weights, or key poses. In these settings, we can 
speed up the process of making crowd motion se-
quences and enable the reuse of animation. 
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1. Introduction 
 

Models in movies or games usually have skele-
tons for easier motion editing, and are referred 
to ”animatable models” since they carry animation 
data, whereas those without animation data will be 
called ”static models” in this paper. Animators bring 
3D static models to life by making plausible and life-
like motions, and one of the common solutions is to 
build a skeleton, to set its binding weights with 
neighboring vertices, and then editing the key-poses. 

Imagine there are more than one hundred dancers 
dancing uniformly. To generate such animation with 
various 3D body shapes, it is necessary to repeat the 
editing process over and over again, even for identi-
cal motion sequences. There are many researches fo-
cus on ”motion retargeting” or ”transferring motion 
captured data”, but most of them need to define the 
skeleton and binding weights of the target model be-
fore transferring the source model’s motion. Con-
structing the same skeleton structures for each 
dancer may be easy, but setting the binding weights 
is really a tedious task and may cost a lot of time 
even for experienced animators. Therefore, we pro-
pose an efficient technique which can clone a skele-

ton-driven animation from source model to target 
ones easily such that users will be able to generate 
similar animation data quickly, and refine it later if 
necessary. 

 

 
Figure 1. The motion of the dog model is trans-
ferred to the cat model. 

 
In other words, if we have a running dog model 

and a static standing cat model, the result of our sys-
tem will be a running cat model, as shown in Figure 
1. Furthermore, we can not only clone the animation 
between two models with similar topologies, but also 
the models with different topologies, for example a 
monkey and a cola can. 

The basic idea is that we have to construct a co-
herent skeleton structure for the target model first. 
Once we can derive the same skeleton structure and 
clone the animation data, the key-frames can be 
transferred directly. Because the target model only 
comprises mesh information, we have to disperse the 
skeleton information to nearby vertices on the mesh. 
As the descriptions in [3], we then utilize the corre-
spondence of all vertices between the two models to 
reconstruct the skeleton. Moreover, the binding 
weights and texture information are also generally 
saved as the attributes of the vertices, so we can 
clone this information through the correspondence 
too. 

One of the common ways to find the correspon-
dence for all vertices between two models is surface 
parameterization. With this technique, users need to 
specify common features between two models, and 
to dissect both of the two models into homologous 
patches manually. We provide a user-friendly inter-
face like other 3D-morphing programs to accomplish 
this control process easily. In order to transfer the 
skeleton data, we represent each joint of the skeleton 
as two vertices, or ”markers”, which form a numeri-
cal relations to the joint. Due to the consistent corre-
spondence, we can find those markers on the target 
model and reconstruct the skeleton of the same struc-



ture. As soon as the animation data is transferred, 
our system can clone the animation from the source 
model to the target one. 

Our major contribution is that we facilitate users 
by speeding up the process of making similar motion 
sequence for crowds, and by enable the reuse of ani-
mation data. Target models do not need to pre-define 
their skeletons and binding weights before cloning 
animation. We can transfer these two important at-
tributes to target models automatically after specify-
ing common features of source and target models. 
 
2. Related Work 
 

In this paper, we make users to dissect models 
into patches manually, and they also need to specify 
some common features in order to find the consistent 
correspondence. Each relative pair of patches is pla-
nar parameterized and aligned according to those 
common features. After overlaying the aligned em-
beddings, the correspondence of all vertices can be 
found. In our experiments, we can observe when the 
patch is more like a disk, when the planar parame-
terization has less fold-over problem, and when the 
correspondence is more correct.  

Since an arbitrary 3D model may be closed or 
nonclosed, works have been published, discussing 
how to decompose a model into patches. Eck et al. [5] 
used the Voronoi diagrams and Delaunay triangula-
tions to partition a model into several parts, but parti-
tioning two models consistently is not easy because 
the sites are selected randomly. As for Normal 
Meshes, Guskov et al. [12] used a mesh simplifica-
tion method presented by Garland and Heckbert [9] 
to create a base domain for only one model. Lee et al. 
[14] provided a 3D morphing method, with which 
users first manually assign the corresponding fea-
tures of the source and target models, and then using 
MAPS (Multi-resolution Adaptive Parameterization 
of Surfaces) [15], the independent coarse base do-
main can be found through a simplification hierarchy. 
The parameterizations can thus be established on the 
merged base domain. The more the two models are 
dissimilar, however, the more user control will be 
needed to solve the correspondence problem. Katz 
and Tal [13] proposed an algorithm to dissect a 
model into meaningful patches by utilizing the com-
bination of geodesic distance and angular distance. 
By applying maximum flow algorithm, they can also 
smooth the boundaries between patches. However, 
the decomposing algorithm was not proposed to find 
decompositions for compatible model, and the base 
domain founded by this method may not be consis-
tent. 

Praun and Hoppe [19] provided an algorithm per-
forming consistent mesh parameterizations for sev-
eral models. To get the consistent mesh parameteri-
zations, the users have to specify a common base 
domain and manually map it to all of the models first. 

Then, the parameterizations can be accomplished by 
subdividing the base domain for separate models. 
Since cloning animation needs more precise corre-
spondence for all vertices, especially the features, 
adopting the common base domain is hard to find for 
all cases because the numbers of features are diverse. 
This problem can be solved by constructing a com-
mon base domain for each pair of the source and tar-
get models, but may requires more efforts of users. 

In the topic of planar parameterization, barycen-
tric mapping, described by Tutte [23], defined every 
internal node as the baryceter of its neighbors. The 
shape of the mesh does not influence the position of 
the internal node, since the mesh connectivity is the 
only concern in this method. Floater [6] suggested a 
shape-preserving method to preserve chord length 
and barycentricity by using the combination of bary-
centric mapping, where each internal node is a con-
vex combination of its neighbors. Eck et al. [5] pro-
posed a discrete harmonic map method, which pre-
served aspect ratio of triangles. Moreover, Shlafman 
et al. [21] compared parameterization methods 
of ”barycentric”, ”shape-preserving”, and ”har-
monic” according to various distortion measures, 
and ”harmonic mapping” emerged minimum distor-
tion in their experiments. But when the patch is dis-
similar to a disk, harmonic mapping resulted in fold-
over severely. Desbrun et al. [4] and Lévy et al. [16] 
proposed different methods to compute discrete con-
formal mapping. With their technique, fold-over-free 
embeddings can be generated if the patch is not simi-
lar enough to a disk. To resolve the fold-over prob-
lem, we incorporate a spring method, and will dis-
cuss it later. 

There are also many other studies focusing on 
spherical parameterization, which is an approach that 
can deal only with models that are genus-zero. One 
of the advantages of this method is that models do 
not need to be decomposed. Alexa [1] suggested a 
spring method to map a model onto a unit sphere, but 
the method only concerns about the connectivity of 
the mesh and causes high distortions. Then, Gotsman 
et al. [11] mapped a simple 3D model onto a unit 
sphere by solving a quadratic system. Praun and 
Hoppe [19] also proposed a coarse-to-fine algorithm 
to embed a model onto a unit sphere robustly, but the 
base domain of the model will limit the possibility of 
feature alignment. 

In the topic of feature alignment, Alexa [1] pro-
posed a method to align features on a unit sphere. It 
cannot guarantee, however, that those features can 
align to designated position. And finally, for feature 
alignment on planar embedding, many 2D image 
warping algorithms are proposed. Most of the studies 
used [8] to prevent the fold-over problem, and we 
also adopt this method to align features on embed-
dings. Alexa [2] and Floater and Hormann [7] pre-
sented exhaustive surveys, respectively. 



Topic of transferring animation becomes impor-
tant nowadays. Summer and Popović [22] proposed 
a good method to transfer deformation between tri-
angle meshes. After getting the mapping between the 
triangles of the source and target models, they com-
puted the affine transformation that encoded the 
ideal change of orientation, scale, and skew of each 
triangle. Then deformation transfer solved an opti-
mization problem to maintain consistency. 
 
3. Animation Data 
 

In order to clone the animation sequence of a 
source animatable model to a target static model, we 
have to transfer all of the animation data, including 
binding weights, skeleton, and key-frame poses. 
There are more details can be founded in [17] and 
[18]. 

These animation data of source model can be mo-
tion captured data or constructed by animators. Gen-
erally, many studies can apply motion captured data 
to other characters. However, these studies need to 
pre-design the skeleton and binding weights of the 
target model. Since we know that skinning method 
may cause artifacts when twisting and bending, ani-
mators may design the skeleton and binding weights 
purposely, such as adding more extra joints, to pre-
vent these artifacts. Both of them depend much on 
animators’ experiences. 

Moreover, although there are some powerful tools 
such as ”Maya” provide the function to paint the 
binding weights for each joint on the mesh, it is 
really a tedious work. Since our method can transfer 
both the skeleton and binding weights to the target 
models. Users do not need to preprocess the target 
models except marking some common features.  
 
4. Consistent Surface Parameterization  
 

Because the binding weights are saved as a ver-
tex’s attributes, we need to get the correspondence of 
all the vertices between the source and target models. 
We use a planar parameterization method to find the 
correspondence of the two models.  
 
4.1. Discrete Conformal Mapping 
 

First, the user needs to assign the correspondence 
by partitioning each model into the same number of 
patches. In our system, the boundary of a patch can 
be represented by several vertices (i.e., called an-
chors) in sequence, and then it can be obtained by 
calculating the shortest path between two anchors on 
the mesh. After dissecting, since each pair of patches 
is disk-like, we mapped them to a plane by discrete 
conformal mapping [4]. The conformal mapping re-
sults are shown in Figure 2. Their algorithm is to 
solve a sparse linear system, which minimizes the 

combination of Chi Energy and Dirichlet Energy on 
triangulations. 

 

 
Figure 2. We dissect the dog and cat models 
into two correspondent patches, respec-
tively. The right side rectangles show their 
conformal maps. 
 
4.2. Relax Conformal Map 
 

 
Figure 3. If a vertex is detected as a fold-
oververtex, those vertices inside an effect 
radius r are needed to be relaxed. 
 

 However, if the patch of the model is not very 
similar to a disk, a conformal map without fold-over 
may not be found. Therefore, we combine the spring 
method described in [2] to relax those fold-over ver-
tices after conformal mapping process. As shown in 
Figure 3, after making the conformal map, we detect 
which vertex of the conformal map is fold-over, and 
then each vertex vi insides the effect radius r of the 
fold-over vertex needs to be performed spring re-
laxation. Moreover, each vertex vi will move to 
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where vj is the neighbor of vi, and c is a constant (ex-
perimentally c = 2). The longer edge will be short-
ened so that the vertex vi will be put in the center of 
its 1-ring neighborhood. This relaxation will not be 
terminated until no fold-over vertex is found. Owing 
to this relaxation algorithm does not concern the 
shape of the original mesh, the radius should not be 
too large and we only use it to solve the fold-over 



problem. Figure 4 shows the difference of using 
spring relaxation or not. 
 

 
(a)    (b) 

Figure 4. (a) An original conformal map. (b) 
A conformal map with relaxation. 
 
4.3. Feature Alignment 
 

We overlay each pair of patches’ embeddings to 
find the correspondence of all vertices. Cloning ani-
mation to other models needs more precise mapping 
between all vertices than 3D morphing. If the corre-
spondence is not precise enough, the binding 
weights will be transferred incorrectly and the de-
formation of the target model will be strange. On the 
purpose of computing better correspondence be-
tween each pair of homologous patches, we align the 
important features on the conformal map. 

After creating the fold-over free conformal map 
for each pair of patches, the user needs to specify the 
common features of the source and target models 
manually or by other automatic or semi-automatic 
algorithms. In this paper, we use a fold-over free 
warping scheme [8] to align those features. Many re-
searches in mesh morphing also use this method to 
align features on planar embeddings. It deserves to 
be mentioned that we do not need to change the edge 
connection when fold-over occurs, because we only 
want to retrieve the correspondent relation of the 
vertices. 
 
4.4. Correspondence Representation 
 

Given two aligned embeddings, we overlay them 
to find the correspondence of all vertices between 
the two models. There is no need to merge the faces, 
edges, and vertices as done in some traditional ap-
proaches of 3D metamorphosis, while we only need 
to know each vertex of the source model are laid at 
which face of the target model and its numerical re-
lation. Assume that each vertex p of the target 
model’s embedding lies in a triangle of the source 
model’s embedding with 2D coordinates q1, q2, and 
q3. The relation of p, denoted by R(p), can be ex-
pressed using the barycentric coordinate: 
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where ∆q1q2q3 denotes the area of the triangle con-
sists of vertices q1, q2, and q3. 
 
5. Animation Cloning 
 

In order to clone the animation of the source 
model to the target one or ones, we have to construct 
the same skeleton structure. Since the target model 
only has the mesh information, we have to disperse 
each joint position to vertices close to it. Allen et al. 
[3] proposed a method to transfer skeleton data. 
They chose two or three points on the mesh as mark-
ers for each joint, and then calculated the local posi-
tions of these markers in the associated joint’s coor-
dinate. As a result of the consistent parameterization, 
the corresponding positions of these markers on the 
other mesh can be derived, and the skeleton poses 
and bone lengths can be constructed using inverse 
kinematics. We utilize this method to re-construct 
the same structure of skeleton for the target static 
model. 

Because we deal with 3D model with meshes in-
stead of articulated figure, we solve, mainly, the 
problem of transferring animation data. The anima-
tion data including skeleton and binding weights 
generated by our system can also be imported 
into ”Maya” for further refinements. 
 
5.1. Skeleton Transfer 
 

After surface parameterization, for each joint in 
the skeleton, we choose the nearest vertex to the 
joint as a marker A on the source model mesh. A 3D 
vector forming marker A to associated joint can in-
tersect the source model mesh, and we call this inter-
section marker B. Markers A and B have a numerical 
relation to the associated joint. As shown in Figure 5, 
assume v1 is marker A and v2 is marker B, joint J0 
can be represented as 0 1 2J vα β v= ⋅ + ⋅ , where 

2 0 1 2 1 0 1 2/ , /v J v v v J v vα β= − − = − − . 
 

 
Figure 5. v1 and v2 are used to record J0, 
where v1  is the nearest vertex on the mesh, 
and v2 is the intersect point of the mesh by 
v1J0. 

 



 
(a)    (b) 

Figure 6. The skeleton transformation result 
shown in ”Maya”. (a) The skeleton of the 
dog is constructed by an animator, and (b) 
the skeleton of the cat is constructed by our 
system automatically. 
 

We record marker A, marker B, α, and β to repre-
sent the associated joint information. According to 
the consistent parameterization, we can find relative 
marker A’ and marker B’ on the target model mesh. 
Afterward, the relative joint can be computed by cal-
culating ' 'A Bα β⋅ + ⋅ . Following calculating all 
joint positions in the target model, we can clone the 
joint connectivity as the source model’s skeleton 
structure. Figure 6 shows the result of the transferred 
skeleton from a dog to a cat. 

There are, however, some limitations, resulted 
from that we only choose two markers to record the 
joint’s position, while marker A is defined as the ver-
tex closest to the associated joint. 

 
5.2. Binding Weights Transfer 
 

Rely on the correspondence mentioned in Section 
4.4, vertex p’s binding weight can also be retrieved 
by calculating the combination of binding weights of 
q1, q2, and q3. 
 
6. Result 
 

As shown in Figure 1, the source animatable 
model is a dog with a skeleton and motion data, and 
the target static model is a cat that only has mesh in-
formation, where the two models contain, respec-
tively, 8,136 and 5,400 triangles. To clone 20 key-
frame poses and skeleton data from the dog model to 
the cat takes about 2 minutes on a desktop PC with 
an Intel Pentium 4 3GHz CPU, and to specify the 
correspondence of 40 features between the two mod-
els costs 10-15 minutes through our user interface. 
This is much faster than traditional methods to clone 
animation, and is more perceptual for people who are 
new to creating animation. 

Utilizing our system, an animation sequence can 
be reapplied to different models which only have ge-
ometry information. To perform the surface parame-
terization including relaxation and alignment for the 
dog model and the cat model takes 1.546 and 1.548 
seconds, respectively. Creating the correspondence 
for all of the vertices needs 11.328 seconds and re-
constructing skeleton for the target model costs 

0.141 seconds. Figures 7 and 8 show other results 
created by our method. 
 

 
Figure 7. The monkey is the source model, 
and the gorilla and the cola can are the tar-
get models. The monkey and the gorilla have 
1,884 and 5,454 triangles, respectively, and 
have 53 common specified features. The 
cola can has been specified 20 common fea-
tures with the source model. 
 

 
Figure 8. The dancing motion sequence of a 
fat man model is cloned to the girl and the 
boy models, respectively. They have 6,848, 
928, and 4,356 triangles and 41 common fea-
tures are specified among them. 
 
7. Conclusions and Future Work 
 

An efficient method for cloning animation from 
an animatable model to a static one is presented in 
this paper. The vertex-wise correspondence between 
the two models is derived from their planar surface 
parameterizations with feature alignment. Hence, a 
model’s motion, color, texture, skeleton, and binding 
weights can be transferred to other ones, and an ani-
mation sequence can be reused to different models, 
even the target models only have geometry informa-
tion. Therefore, through our method, the time-costly 
routines that produce the skeleton, binding weights, 
and the same animation sequence for target models 
can be reduced. Moreover, the target models with the 
transferred animation data can be imported 
into ”Maya” for later refinement if necessary. In our 
experiments, the result generated by our system 



without any refinement is still adoptable, especially 
is useful in video games, background crowds, and 
animations that do not require very high-quality de-
formations. 

Currently, the user must choose a ”proper” pose 
of the source model from an animation sequence be-
fore performing our algorithm, where the ”proper” 
means the pose of the source model is similar to that 
of the target static model. If the source and target 
models are in different poses, for example, the 
source model is standing but the target one is sitting, 
the cloning results may be a little strange. One of our 
future works is to adjust the initial pose automati-
cally to let the source and target models be the same 
pose before cloning the animation sequence. 

To transfer the joints of the source model, we just 
recorded a joint by only two vertices. Although the 
result shows this simple method works well in al-
most all cases, using more vertices to record a joint 
can also be considered to enhance the precision. 

We can discovery that when the source and target 
models have different proportion of limbs and in 
some animation sequences a part of the target model 
will intersect itself. This problem also occurs in mo-
tion capturing. Gleicher [10] presented a space-time 
constraint method for 3D models. This method fo-
cused on adapting the motion of one articulated fig-
ure to another with identical structure but different 
segment lengths. They assume that the configuration 
of an articulated figure is specified by a hierarchical 
joint tree. Besides, when the two models’ shapes dif-
fer very much, self-intersection also will occur. We 
should pay more efforts to solve the mesh intersec-
tion problem in the future. 
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