
Conceptual Farm

Shuen-Huei Guan†

Rung-Huei Liang†
Sheng-Yao Cho†
Bing-Yu Chen‡

Yu-Te Shen†
Ming Ouhyoung*

†{drake,ven,edwards,liang}@cmlab.csie.ntu.edu.tw, ‡robin@ntu.edu.tw, ming@csie.ntu.edu.tw*

Communication and Multimedia Laboratory,
†*Dept. of Computer Science and Information Engineering / ‡Dept. of Information Management,

National Taiwan University

Abstract

Conceptual Farm is a virtual reality platform for

generating and observing behaviors of different
autonomous characters. By providing 1) descriptions
for characters’ behaviors and 2) 3D animations and
sound, life-like characters in a realistic habitat can be
created, modified, and interact both with users and
other characters in real time. The flexible, manageable
and scalable nature of Conceptual Farm leads to its
desirability in zoological research, general education,
game and film production, and even decorative arts.

1. Introduction

Imagine you have a paintbrush in your hand. You
draw some pigeons with gray feathers in a square, and
teach them to walk, to eat, to fly, and so on. Then, the
pigeons start wandering around the ground, eating the
feed you spread, and flying up from time to time. An
idea occurs to you, “Why not add kids to play with the
pigeons?” So you draw three children in the square,
running amongst the pigeons for fun as soon as run-
ning is taught. As new ideas continue to strike you, the
picture becomes more and more enriched…

Interactive artificial life as imaged above has been
presented so far [2, 3, 5, 6, 12]. Based on biological
theories, these systems simulate animals’ behaviors
realistically, but, on the other hand, too complicated to
be integrated with a compact and systematic interface
such that users can create artificial lives easily. Some
languages are proposed for describing cognitive be-
haviors [4, 5, 7], but they are not intuitive enough.

To simplify the process of creating artificial lives,
we designed a system, Conceptual Farm, for easy
creation, modification, observation of and interaction
with virtual autonomous characters. Four important
features of Conceptual Farm are:

1. Converting simple descriptions into complex be-
haviors — Complex autonomous behaviors are cre-
ated using compact table-based descriptions (Fig-
ure 3) and flexible scripts instead of complicated
codes.

2. Semi-interactive editing — The behavior is per-
formed in real time as users adjust characters’
properties, except when there is a need to regener-
ate the animation clips.

3. Extensibility — Conceptual Farm is a platform that
can be used to easily realize every type of animal
including insects, mammals, fish, and can even be
extended to autonomous characters of every type
such as aircraft or soccer players.

4. Adoptability for AFX — According to the former
features, the design philosophy of Conceptual
Farm can be applied to the higher levels in Anima-
tion Framework eXtension in MPEG-4, which are
not yet clearly defined.
The first two features, which are not easily per-

formed by previously mentioned approaches, are our
main contributions, since our system reflects user’s
input with characters’ behaviors directly, and users can
focus on characters’ behaviors without annoying pro-
gramming problems.

2. Overview

 Figure 1: Flocking pigeons in Conceptual Farm

mailto:ming@csie.ntu.edu.tw

Based on Conceptual Farm, Dove project creates
pigeons in a 3D world that can act autonomously in
Figure 1. These autonomous behaviors come from a
table-based system, in which the three resources of
simulated characters (Plans, Navigating Styles and
Appearances) are provided by users.

This paper describes the mechanism which enables
an efficient approach to simulate artificial lives as in
Dove, the implementation issues, and the impact on
AFX.

3. Behavioral Model

In Conceptual Farm, all simulated characters can be

viewed as autonomous agents, which repeatedly per-
ceive information from World and perform certain re-
actions, as illustrated in Figure 2. Each agent consists
of Decision Maker, Pilot, and Performer, and has its
own resources provided by users. During each simulat-
ing process, Decision Maker selects a Navigating Style
and an Appearance according to the information ob-
tained from World, and passes them to Pilot and Per-
former, respectively. Pilot determines new position,
velocity, and orientation for the next instant, and Per-
former outputs proper Appearances to World. In the
implementation, World is the union of all the other
characters.

Let us take an example of the whole process. There
is a dove. At one moment, Decision Maker decides to
eat food, then Pilot steps a forward little, and finally
Performer plays head-lowering animation and cooing
sound.

3.1 Decision Maker

Decision Maker, as a brain with sense organs, per-

ceives information from World and then chooses the
best responding action. Influences affecting decision-
making include not only events made by users with the
system UI or by other characters in the virtual world

but also internal factors such as current action, degree
of hunger, etc. Following the rules given by users,
namely, Plans, Decision Maker will select the action
with the highest utility to send to Pilot and Performer.

Plans describe 1) the relationship (occurrence prob-
abilities) between actions and percepts, 2) the mapping
of each action to its corresponding Navigating Styles
and Appearances, and 3) the scope of each percept.
The following is a sample of (1) and (2) of a pigeon’s
Plans.

 Wander Eating Pursuit

See(feed) 0.2 0.0 0.8
Destroyed(feed) 0.7 0.0 0.3

Hungry 0.0 0.5 0.5
Wander 0.7 0.0 0.3

Eating(feed) 0.2 0.8 0.0
 NS_2DWander NS_2DStill NS_2DPursuit

Animation wander.asf eat.asf pursuit.asf
Sound wander.wav eat.wav pursuit.wav

Action Percept

Navigating Style Appearances

Figure 3: Plans
Decision Maker consists of 2 agents: Percept Agent

and Action Agent. We refer to the c4 architecture [2]
of the MIT Media Lab.

The Percept Agent senses all external events within
the sensory scope for each percept. Internal self-
awareness, such as the current action, is also sensed.
Users can dynamically add or remove customized per-
cept functions as well as the built-in ones, and the be-
haviors will change immediately. Plans not only en-
able realistic simulation for sophisticated behaviors
with the uncertain nature of the probability values, but
also, as a table, provide a compact way for easy ma-
nipulation.

The Action Agent is a utility-based agent. It uses
the percepts stored by Percept Agent and calculates the
score for every candidate action using (1). If nothing is
sensed within the scope of a percept, the probability of
this percept will be set to zero. The resulting probabil-
ity of each action is proportional to its score.

 (1)

0

,() () ()

N

j i j

i

Score A Prob P A P
=

⋅Φ= ∑ i

 Aj : the jth action
 Pi : the ith percept
 N : the number of percepts.

Prob (Pi , Aj) : the occurrence probability of ith per-
cept when the jth action happens

Ф(Pi) : 1 if Pi occurs, 0 otherwise.

Figure 2: An agent with its resources vis-a-vis. World.

Autonomous Agent

Decision
Maker

Pilot

Performer

World

Resources

Plans

Navigating
Styles

Appearances

After selecting the action with the highest score, the
Action Agents will send the Navigating Style to the
Pilot, while the corresponding animation and sound
will be sent to Performer.

3.2 Pilot

For each character, Pilot determines its own path
and orientation according to the Navigating Style (e.g.
seek, pursuit and wander) from Decision Maker.

Pilot is built based on Reynolds’s OpenSteer li-
brary 1 . Extending Reynolds’ 16 common steering
styles for autonomous agents [9], we provide 31 built-
in Navigating Styles. Although the built-in styles meet
the demands of most cases, users can also provide cus-
tomized Navigating Styles through scripts. We provide
a high-level script based on Small2, which enhances
the flexibility of Conceptual Farm.

For example, when a bird is landing with a built-in
Navigating Style, NS_YParabolicUp, it will have the
unreal velocity-alignment problem as illustrated at the
left of Figure 4. The problem can be solved by a script
as below:

It first calls applyForce to get the new position and

velocity, and it applies calculateOrientation with the y-
zeroed velocity to get the reasonable orientation with
the result as illustrated on the right side of Figure 4.

3.3 Performer

Performer is responsible for perceptible outputs of
autonomous characters by animation, sound or any

ex

 tools such as
M

sults

ng Conceptual Farm to
uild Dove, a square at the Chiang Kai-Shek Memorial

Ha

 Plans, 12 anima-
tio

eptual Farm

 mentioned above,
the of our system can be applied to enhance
cu

ion) [1] in order to pro-
vid

 1 http://opensteer.sourceforge.net
2 http://www.compuphase.com/small.htm

pressive media provided by users. Our system han-
dles most kinds of sounds by FMOD3.

Several exporters were implemented to allow users
to make animations with their favorite

aya, 3D Studio Max.

4. Experimental Re

We spent about one hour usi
b

ll in Taipei where pigeons gather to find food, clean
their feathers, and where dogs wander around, and user
can spread crumbs and run amongst the pigeons in
Figure 6. It is much faster than the three-man-week
building process of a similar program by scratch, given
the same animation and audio files.

Taking the pigeons’ resource as an example, there
are 13 actions and 8 percepts from

ns and 4 sounds for Appearances, and 2 scripts for
Navigating Styles.

5. AFX & Conc

According to the characteristics
 concept

rrent multimedia standards.
As illustrated in Figure 5, MPEG-4 proposed AFX

(Animation Framework eXtens
e a standardized description for computer animation

and interaction, similar to video and audio standards.
AFX is layered into six components, which are, in a
top-down order, cognitive, behavioral, biomechanical,
physics, modeling and geometry components. The last
four are specified clearly in details, while cognitive
and behavioral components are not, since they are AI-
intensive and difficult to formalize.

3 http://www.fmod.org

Figure 4: Two landing styles.

Audio
DB

Video
DB

AFX
DB

．
．
．

．
．
．

．
．
．

Audio CB

Video CB

Decoded
AFX

Audio
Decode

Video
Decode

AFX
Decode Animation

Framework
eXtension

D
IM

F

．
．

．
．

．
．

C
om

posite

R
ender

Figure 5: AFX in MPEG-4

public doLanding (force, elapsedTime) {
 applyForce (force, elapsedTime)
 velocity[1] = 0
 calculateOrientation (velocity)
}

T

o make up for this limitation in current AFX, the

4 th e and behavioral
layers, a onn w edia in e other
component AFX, her parts in EG-4.
The fo d d chara rs’
havi nc rm is also suitable for storage
and ission, which is the characteristic of stan-
dard ta.

6. Fut Wo Co ions

Conc l Fa rovides asy way to create
virtual lives limitations.
Ch

tual Farm. The system simulates char-
cter’ behaviors realistically with compact and formal-

exibility by
cal method

or

-E002-002. We are graceful
to K

Animation
Framework eXtension (AFX)

ie, Y. Ivanov, and B. Blum-
of a Vir-

ua

concept of our system provides a solution for editing
and functioning

nd c
data in

ects them
e cognitiv
ith multim th

 MP
cte

s of
rmalize
in Co

and even ot
 data use
eptual Fa

to describe be-
ors

 tran
ized

sm
 da

ure rk and nclus

eptua rm p an e
. There are, however, some

aracters cannot adapt themselves to the environment
because they cannot modify their own Plans. In addi-
tion, hardcode cannot be substituted for with our table-
based input mechanism to provide user-character inter-
action, which is simulated-character, environment, and
input-device dependent.

In summary, we demonstrate a novel approach to
create interactive artificial lives with our virtual reality
system, Concep
a
ized input descriptions and preserves its fl
ntroducing scripts. It also suggests a practii

f standardizing and easily manipulating the dynamic
and real-time properties within the cognitive and be-
havioral levels of current AFX in MPEG-4.

7. Acknowledgements

This research was supported in part by National
Science Council 92-2622

uei-Yuan Zheng, Ping-Chun Kuo, Wei-Chih Liao,
and Tien-Jung Huang (National Taiwan University of
Arts) for providing their technical helps. We also thank
Wan-Chun Ma for his comments on MPEG-4 AFX.

8. References

[1] ISO/IEC 14496-16:2003(E), Information Technology —
Coding of Audio-Visual Objects — Part 16:

[2] R. Burke, D. Isla, M. Down
erg, “Creature Smarts: The Art and Architecture b

t l Brian”, Proc. of Game Developers Conference, 2001, pp.
147-166.
[3] R. Burke and B. Blumberg, “Using an Ethologically-
Inspired Model to Learn Apparent Temporal Causality for
Planning in Synthetic Creatures”, Proc. of the First Interna-

] L. Chen, K. Bechkoum, and G. Clapworthy, “A Logical
evel Agent Control”, Proc. of the Fifth

Autonomous Agents, 2001,

and Planning for Intelligent

etic Characters”, Proc. of CHI, 1999, pp. 152-158.

Worlds”, Proc. of

.

4 We use the word ”functioning” instead of “playing” because artifi-
cial intelligence is concerned in addition to animation.

tional Joint Conference on Autonomous Agents and Multi-
agent Systems, 2002, pp.362-333.
[4
Approach to High-L
International Conference on
pp.1-8.
 [5] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive Model-
ing: Knowledge, Reasoning
Characters”, Proc. of SIGGRAPH, 1999, pp.29-38.
[6] M.P. Johnson, A. Wilson, B. Blumberg, C. Kline, and A.
Bobick. “Sympathetic Interfaces: Using a Plush Toy to Di-
rect Synth
[7] J.E. Laird, “It Knows What You’re Going to Do: Adding
Anticipation to a Quakebot”, Proc. of the Fifth International
Conference on Autonomous Agents, 2001, pp. 385-392.
[8] K. Perlin and A. Goldberg, “Improv: A System for
Scripting Interactive Actors in Virtual
SIGGRAPH, 1996, pp.205-216.
[9] C. Reynolds, “Steering Behaviors for Autonomous Char-
acters”, Proc. of Game Developers Conference, 1999, pp.
763-782
[10] K. Sims, "Evolving Virtual Creatures", Proc. of SIG-
GRAPH, 1994, pp.15-22.
[11] D. Terzopoulos, “Artificial Life for Computer Graphics”,
Communications of the ACM, Vol. 42, No. 8, 1999, pp.33-42.
[12] X. Tu and D. Terzopoulos, “Artificial Fishes: Physics,
Locomotion, Perception, Behavior”, Proc. of SIGGRAPH,
1994, pp.43-49.

Figure 6: Dove built by Conceptual Farm

	1. Introduction
	2. Overview
	3. Behavioral Model
	3.1 Decision Maker
	3.2 Pilot
	3.3 Performer
	4. Experimental Results
	5. AFX & Conceptual Farm
	6. Future Work and Conclusions
	7. Acknowledgements
	8. References

