
Building Binary Orientation Trees from Unorganized Point
Clouds through Visibility Checks

陳奕麟
國立清華大學

yilin@cs.nthu.edu.tw

陳炳宇
國立台灣大學

robin@ntu.edu.tw

賴尚宏
國立清華大學

lai@cs.nthu.edu.tw
西田友是
東京大學

nis@is.s.u-tokyo.ac.jp

ABSTRACT
Given a complete unoriented point set, we propose a binary
orientation tree (BOT) for volume and surface representa-
tion, which roughly splits the space into the interior and ex-
terior regions with respect to the input point set. The BOTs
are constructed by performing a traditional octree subdivi-
sion technique while the corners of each cell are associated
with a tag indicating the in/out relationship with respect
to the input point set. Starting from the root cell, a growing
stage is performed to efficiently assign tags to the connected
empty sub-cells. The unresolved tags of the remaining cell
corners are determined by examining their visibility via the
hidden point removal operator. We show that the outliers
accompanying the input point set can be effectively detected
during the construction of the BOTs. After removing the
outliers and resolving the in/out tags, the BOTs are ready
to support any volume or surface representation techniques.
To represent the surfaces, we also present a modified MPU
implicits algorithm enabled to reconstruct surfaces from the
input unoriented point clouds by taking advantage of the
BOTs.

1. INTRODUCTION
Hierarchical space partitioning structures, such as octrees [9],
Binary Space Partitioning (BSP) trees [4] and k-d trees [2],
are extensively exploited in various research fields. The
simplicity of constructing such structures makes them very
popular in many computer graphics applications in order to
achieve better efficiency or to be scaled toward large data
sets. Most of the existing hierarchical structures put em-
phasis on partitioning the space to produce a collection of
subsets of the data satisfying a given error criterion. How-
ever, few of them attempted to combine additional semantic
information to assist the processing of the input data sets.

In this paper, we present the binary orientation trees (BOTs)
for representing unoriented and unstructured point clouds

(a) (b)

Figure 1: The BOT splits the space into inside/out-
side and assists the surface reconstruction process
from the Igea data set. The BOT is rendered by the
leaf nodes of level 3 with the corners tagged as in
(shown in (a) by the orange points) and out (shown
in (b) by the green points), respectively.

as well as the semantic metadata for representing their vol-
umes and surfaces, A BOT roughly splits the space into two
parts, i.e. inside or outside, by exploiting the observation
that any point not belonging to a model can only be either
visible or invisible from various viewpoints. Given a com-
plete point set, a BOT is built by performing the traditional
octree-based space partitioning technique while the corners
of each cell are associated with a tag indicating the in/out
relationship with respect to the input point set.

Conceptually, the BOTs are similar to the signed distance
fields derived from an explicit or implicit surface represen-
tation. Although it is simple to perform in/out checks if an
implicit surface or polygonal mesh approximating the 3D
model is given, to understand where the inside/outside part
is with respect to a discretely sampled point cloud is not
a trivial task, especially when the orientation information
is not available. Besides the in/out information stored in
the tree nodes as the traditional octree-based volume data
representation, the BOT also contains the surface points
sampled from the original model’s surface or filtered from
the original point cloud. Hence, the BOTs contain sufficient
information for representing the volume and surface of the
input point set and ready to support any volume or surface
representation techniques.



The kernel of building the BOTs is a tagging algorithm that
separate the exterior points of a raw point set from the inte-
rior ones. Starting from the root cell with all corners tagged
as out, a growing stage is performed to efficiently assign
tags to the connected empty sub-cells. Based on the obser-
vation that the cell corners are either visible or “occluded”
by the input point cloud when viewed from outside, the un-
tagged corners can be effectively classified into interior or
exterior points by examining their visibility via the hidden
point removal (HPR) operator [12].

It is worth noting that BOTs possess some advantages not
shared by the traditional octree-based volume data repre-
sentation. First of all, it can be directly computed from
raw data points lacking of essential information like nor-
mal vectors. Since it keeps the original point set, it can be
adaptively refined when necessary. Besides, the in/out in-
formation carried by a BOT can be exploited to reconstruct
the model surface from the surface points. If the original
input point cloud contains some outlier points, the outliers
will be removed during the BOT construction.

The rest of this paper is organized as follows: we firstly re-
view some related work in Section 2 and then present the
algorithm of constructing the BOTs while removing the out-
liers in Section 3. In Section 4, we show the application to
surface reconstruction from the input unoriented point sets
through a modified MPU implicits algorithm [17] based on
the BOTs. Sections 5 and 6 demonstrate the experimental
results and conclude this paper, respectively.

2. RELATED WORK
Hierarchical space partitioning data structures are ubiqui-
tous in computer graphics applications as the need of de-
composing and structuring the input data sets. The ba-
sic approaches of building such structures are to recursively
subdivide a root cell embedding a scene or an object un-
til all leaf nodes satisfy a certain user-specified criterion.
The simplest space partitioning strategies are perhaps the
1-to-4 scheme for quadtrees in 2D and 1-to-8 scheme for
octrees in 3D [9, 19], or even uniform grids. Binary space
partitioning (BSP) [4] is a generic process of recursively di-
viding a scene into two parts by a set of the best split-
ting hyperplanes. The k-d tree structure is a special case of
the BSP trees and is constructed through orthogonal space
separation [2]. Recently, Boubekeur et al. [3] developed
the Volume-Surface Trees, which switch the standard octree
subdivision to quadtrees as soon as the local area associated
with the current node passes a height field test, in order
to improve the imbalanced clustering of pure volume-based
space decomposition.

Due to the nature of producing a hierarchy of data clus-
ters, spatial partitioning techniques are widely applied for
efficient data processing and manipulation. In geometric
modeling and processing, surface reconstruction from point
clouds has attracted considerable attentions [5, 7, 13]. The
partition-of-unity approaches aim to reconstruct the surfaces
formed by smoothly blended local implicit patches through
adaptive octree [17] or BSP tree [20] approximation. Follow-
ing the pioneering work of Marching Cubes algorithm [16],
which extracts polygonal meshes from volume data, a num-
ber of iso-surface extraction algorithms have been developed

for the purpose of feature preservation [11, 15] or topology
consistency [6,14].

In [10,24], surface reconstruction was accomplished by iden-
tifying the exterior (interior) volumetric grid points, which
is similar to the construction of the BOTs, in order to define
an initial implicit surface. However, the regular grids used
in these methods are associated with a scalar field derived
from computing a distance transform by PDEs to guide the
tagging process. Xie et al. [22] also proposed a regular vol-
umetric structure called “mono-oriented regions” computed
by active contour method, which carries similar semantic
information as the proposed BOTs. They were utilized to
determine the orientation of locally fitted implicit surfaces
through a voting process. The drawbacks of such structures
include that they are not adaptive to the feature sizes of
input data sets and the high computational cost.

3. BINARY ORIENTATION TREES
3.1 Overview
A binary orientation tree (BOT) T is an octree-like hierar-
chical structure built from a point set P with all cell corners
associated with a tag indicating the in/out relationship with
respect to P. Only the spatial positions of the data points
are assumed to be available. To obtain the in/out informa-
tion from a raw point set is a challenging problem without
the underlying surface. The basic idea is to identify the in-
terior and exterior points according to their visibility from
various viewpoints. Hidden point removal (HPR) is a sim-
ple method that determines the visible points among a point
set from a specific viewing direction through a spherical flip-
ping transformation and convex hull computation [12]. By
exploiting the HPR operator, the exterior points will be ob-
served when viewed from outside, while the interior points
will be occluded by P. Before explaining the construction
process, we first define some notations and examine some
properties of BOTs in this section.

A cell of a BOT T is mono-oriented if the space enclosed
by it is intrinsically the same, i.e. either inside or outside,
otherwise it is called bi-oriented. It is obvious that an
empty cell is certainly mono-oriented. A maximal mono-
oriented cell is not contained by other mono-oriented cells
and is self-orientable since the tags of the sub-cells can be
directly determined by their parent cell. As a result, it is
not necessary to perform further subdivision as soon as the
current cell becomes mono-oriented during the construction
of the BOT. It is worth noting that a cell with all corners
associated with the same tag is not necessary to be mono-
oriented. For example, the root cell of T is typically assigned
a tag out for each corner. However, it is obvious that it
consists of both the interior and exterior regions of P.

3.2 BOT Construction
Given a complete point set P, i.e. there exists no hole in P,
the construction of a BOT T consists of two main stages:
partitioning and tagging.

• Partitioning: Initially, P is inserted into an axis-
aligned bounding box as the root of T . Then, P is
decomposed into a collection of subsets Pi through the
octree subdivision. We adopt the simple criteria of the



(a) (b) (c)

Figure 2: The construction process of a BOT. (a) Octree subdivision of a point set P. (b) The growing
process identifies a set of mono-oriented cells tagged as out (the blue cells with + tags). (c) The carving
process resolves the remaining untagged corners and identifies the mono-oriented cells tagged as in (the green
cell with − tags) and the bi-oriented cells (the red ones).

size of Pi as well as the surface variation [18] measur-
ing if the points in Pi are isotropically distributed or
well approximated to a local plane to guide the subdi-
vision of T . The recursion of the octree subdivision is
stopped as soon as the current node becomes empty.

• Tagging: In this stage, each corner of a cell is classi-
fied as in or out through a tagging process. Exploiting
the property of mono-oriented cells, once a corner of
an empty cell is tagged, the tags of the rest corners
can also be determined. As a result, a growing process
is performed to efficiently tag the connected empty re-
gions. For non-empty cells where the tags cannot be
explicitly determined, a carving process is carried out
to check the visibility of the untagged corners by using
HPR.

Figure 2 illustrates an example of the BOT construction.
Note that since HPR works in 2D, a BOT can be constructed
in 2D as well by replacing the octree with quadtree.

3.2.1 Growing
To tag a sufficiently partitioned T , we start by growing the
mono-oriented cells surrounding P into regions. Apparently,
the root of T should be assigned the out tag to each cor-
ner. Beginning with these corners explicitly tagged, the con-
nected empty cells can also be explicitly tagged. Though
this region growing problem can be resolved by some ex-
isting solutions like front propagation, we devise a recursive
back-tracing tagging procedure, which can be easily realized
in a tree structure like T . Algorithm 1 depicts the pseudo-
code for the growing process. For an intermediate node,
the tag_tree() routine assigns the tags to its subtree(s) by
back tracing from the leaves containing its tagged corners
and propagating the tags if an empty cell is encountered.
Note that the back_tracing() routine is launched if the cur-
rently visited node is a leaf or has been previously checked.
The tag_corners_if_empty() routine sets all corners of an
empty cell as long as one of them is tagged.

3.2.2 Carving

Algorithm 1 The pseudo-code of the growing process.
tag tree(C)
begin
C′ ← all leaves containing tagged corners of C;
if C is not leaf and not traced then

for all cells Cleaf in C′ do
call back tracing(Cleaf );

end for
end if
if C is not leaf then

for all subcells Csub of C do
call tag tree(Csub);

end for
end if
end

back tracing(C)
begin
call tag corners if empty(C);
if C is not leaf then

set C as traced;
for all subcell Csub of C do

call tag corners if empty(Csub);
end for

else if C is an intermediate cell then
Cparent ← parent cell of C;
call back tracing(Cparent);

end if
end

After the growing process, most of the remaining untagged
corners belong to the bi-oriented cells, where the point set P
“pass” through. Among them, some are interior points oc-
cluded by P. As a result, we determine the tags according to
their visibility from various viewing directions by applying
the following iterative process.

1. Collect the untagged corners in BOT to form P ′.

2. Perform HPR on P∪P ′ from a pre-selected viewpoint.

3. “Carve out” the visible points in P ′ and assign them



(a) (b)

Figure 3: Outlier removal during the construction of
the BOT. (a) An isolated outlier cell. (b) A cluster
of the outlier cells.

an out tag.

4. Pick up the next viewpoint and repeat Step 2.

5. If no visible point belonging to P ′ can be detected,
terminate the process. The remaining points in P ′ are
assigned the in tag.

One reason that the tagged points in P ′ are excluded from
the next iteration is that the points in P ′ sometimes also
occlude each other according to the viewpoints though it is
rare. Nevertheless, it is unnecessary to keep the observed
and tagged points during each iteration.

The viewpoint selection with respect to various input point
sets is very difficult, especially when some points lying within
a concave region and can only be observed from some spe-
cific viewpoints. Due to the fact that P ′ somewhat occludes
P, if all points in P is observed during the carving process
outlined above, it is very likely that all points in P ′ are also
observed. We thus use a mask to record if a point in P
has been observed or not. In the beginning of the carving
process, a set of pre-defined viewing directions, such as the
main axes of the bounding box of T , can be used to carve
out most exterior points in P ′. Since the unobserved points
are usually clustered due to the occlusion from the previ-
ous viewing directions, we randomly choose an unobserved
point in P and search for the nearest point in P ′ whose dis-
tance to each point p ∈ P is larger than a threshold δ and
already tagged as out as the new viewpoint to expose the
unobserved regions. The purpose of δ is to prevent from
selecting a viewpoint too close to P, which may cause the
line-of-sight to penetrate into P and disocclude the interior
region. Obviously, the proposed tagging algorithm is lim-
ited to complete point clouds since the holes contained in P
reveals its interior region when viewed from specific viewing
directions.

3.3 Outlier Removal
In this subsection, we explain how outliers embedded in the
input point cloud P can be effectively detected during the
construction of the BOTs. Conceptually simple, the obser-
vation is that the outliers are usually sparse and disorderly
distributed, and thus they can hardly occlude the cell cor-
ners surrounding them. During the tagging stage, the cor-

ners of the cells containing the outliers will most likely be
observed. To remove the outliers, we thus search for the
non-empty leaves of a BOT with all corners assigned the
same tag and mark the enclosed points as the outliers. As
illustrated in Figure 3, the isolated outlier cells may be iden-
tified by the growing process. When the number of outlier
cells increases, the growing process alone may not be able
to resolve the tags of the outlier cells. However, the cor-
ners of an outlier cell will still be observed through various
lines-of-sight passing through the outliers during the carving
process.

Note that this simple outlier detection procedure works un-
der the assumption that some corners of the inlier cells are
occluded by the inliers. Although this assumption is not
guaranteed to be valid all the times, it is quite effective as
shown in Section 5.1 and works for a large variety of real-
world data sets if partitioned sufficiently.

4. VOLUME AND SURFACE RECONSTRUC-
TION

To understand the inside/outside information with respect
to a digital model is essential for many geometric model-
ing and processing problems. Note that the in/out tags
carried by a BOT are intrinsically the same as the tradi-
tional volumetric representations and can thus be accepted
by many existing iso-contouring methods such as the well-
known Marching Cubes algorithm [16]. Because the BOT
carries the input point cloud P, it is adaptively refinable
and can be converted into other volumetric representations,
such as the hermite data [11], by embedding other informa-
tion like intersection and the corresponding normal direction
derived from P. Due to the self-orientable property of mono-
oriented cells, it is only necessary to tag the bi-oriented re-
gions when being refined. In addition, because the tags of
the mono-oriented cells at finer levels are implicitly recorded
by their maximal mono-oriented parent, a BOT is a more
compact representation than regular grids. Figure 4 illus-
trates several examples of volume reconstruction by using
the BOTs.

There are many possibilities to extend the existing surface
reconstruction algorithms to deal with unorganized point
clouds with the aid of the BOTs. For example, the cell
corners tagged as in or out themselves can serve as or may
be used as a hint to create the off-surface constraints when
reconstructing the variational implicit surfaces interpolating
a given point cloud [21]. In this paper, we chose to extend
the MPU implicits algorithm [17] for reconstructing surfaces
with the BOTs by relaxing the requirement of normal vectors
when reconstructing the surface from point cloud.

The MPU implicits algorithm is an octree-based local ap-
proximation method that computes a local shape function
Qi for each cell Ci by fitting a general quadric or bivari-
ate quadratic polynomial to the local point set Pi contained
by Ci. To determine the orientation of Qi, the corners qi

of Ci are used as auxiliary points and a general quadric is
computed by minimizing

1∑
ω(pi)

∑
pi∈Pi

ω(pi)Qi(pi)
2 +

1

m

m∑
i=1

(Qi(qi)− di)
2, (1)



(a) (b) (c) (d)

Figure 4: The isosurfaces extracted from the BOT volumetric representation by the Marching Cubes algo-
rithm [16]. (a) and (b) meshes consisting of 19,804 and 79,460 triangles extracted from BOT level 6 (64×64×64
grids) and 7 (128×128×128 grids) of the Igea data set, respectively. (c) and (d) meshes consisting of 10,024 and
40,584 triangles extracted from BOT level 6 (64× 64× 64 grids) and 7 (128× 128× 128 grids) of the RockerArm
data set, respectively.

where ω is a weight function and di is the average signed
distance computed from the nearest six points pi ∈ Pi of qi

by using normal vectors ni. Note that the in/out tags of
qi is provided by the BOTs, the signed distance di can be
estimated similarly without ni.

Originally, a bivariate quadratic polynomial is defined in
a local coordinate system (u, v, w) with the origin at the
cell center c and the positive direction of w coincides with
the direction of �n, which is the average normal vector of
ni. Without using the normal vectors, we fit a bivariate
quadratic polynomial by performing local covariance analy-
sis on Pi to find out the best fitted plane as the local coordi-
nate system and correct the orientation of the plane normal
n′ by maximizing

m∑
i=1

sign(qi) · (qi − c) · n′, (2)

where sign(qi) is a binary function that returns 1 or −1 if
qi is tagged as + or −, respectively. Note that this simple
method can also be applied to obtain the globally consistent
orientation of an unsigned normal field, which was typically
accomplished by using the orientation propagation methods
based on traversing a corresponding minimal spanning tree
[5,7,8,23].

5. EXPERIMENTAL RESULTS
The HPR operator was implemented by using the Qhull al-
gorithm [1] for convex hull computation. The complexity
of tagging a BOT does not greatly increase with data sizes
since a subset of a dense data set P is sufficient to hide the
BOT corners inside P when performing the visibility check.
Therefore, we take advantage of the BOT to compute a par-
ticle for each non-empty cell Ci, which averages the points
Pi in Ci. Empirically, we used the particles at level 7 or 8
of the BOTs for the tagging process. Experiments are con-

Table 1: Statistics of reconstructing MPU implicit
surfaces based on BOT from several data sets. The
computation times for Tagging and MPU are repre-
sented in seconds.

Data Sets Point # Particles # Tagging MPU
Torus 4,800 3,591 0.188 1.844

Dinosaur 36,988 22,301 2.891 1.985
Rabbit 67,038 17,408 1.391 3.406
Santa 75,781 17,572 1.765 5.266
Igea 134,345 32,940 2.547 6.828

ducted by using some real-world data sets obtained from
3D scanning or image-based 3D reconstruction from image
sequences, such as the Dinosaur. Note that a sparse data
set like the Torus (4,800 points) is also included in our
experiments.

5.1 Outlier Removal
Figure 5 demonstrates the capability of the outlier removal
during the construction of the BOTs. Randomly generated
outliers are appended to the input point clouds for the BOT
construction. Generally, all of the outliers can be effec-
tively detected. In Figure 5 (c), some outliers were not
detected because the increasing number of outliers caused
some nearby cell corners to be hidden during the tagging
process. After removing the detected outliers, such hidden
corners are disoccluded and the remaining outliers can be
detected by performing the tagging process again. It is in-
teresting to note that Xie et al. [22] exploited a similar
idea that outliers will be enveloped by mono-oriented re-
gions during the growing of the active contour models for
outlier detection. However, their method can only deal with
a small number of outliers. In the cases shown in Figure 5,
it is very likely that the outliers widely spread around will
prevent the active contour models from reaching the real



(a) (b) (c) (d)

Figure 5: The outlier removal results during the construction of the BOTs. The red cubes are the cells
containing the detected outliers. (a) Torus data set (4,600 points with 500 outliers). (b) RockerArm data
set (30,272 points with 700 outliers). (c) and (d) Bottle data set (35,086 points with 800 outliers), where 759
outliers are removed in (c) and the rest are detected by the second round of the BOT tagging process.

(a) (b)

Figure 6: Globally consistent normal estimation by
BOT and orientation propagation [8]. The point
clouds are rendered with the normal fields aligned
by (a) BOT and (b) [8].

data points.

5.2 Surface Reconstruction and Orientation De-
termination

The modified MPU implicits algorithm explained in Sec-
tion 4 was applied to several data sets and Table 1 sum-
marizes the computation times measured on a desktop PC
equipped with an Intel Core 2 2.93GHz CPU and 2GB main
memory. Figure 8 demonstrates the MPU implicit surfaces
reconstructed by using the BOTs. One can see that the
BOTs maintain the efficiency of the MPU implicits algo-
rithm while enabling it to deal with unoriented data sets.

We have also exploited the BOTs to align an unsigned nor-
mal field estimated from P with each normal vector ambigu-
ously directed inward or outward. For comparison, we chose
the state-of-the-art orientation propagation algorithm [8].
As shown in Figures 6 and 9, the point sets are rendered with
the aligned normal fields by splating. With back culling en-
abled, one can observe that some data points become invisi-
ble due to the erroneously directed normals obtained by [8],
while the results by BOTs do not have such problems. If
the data points with erroneous normal vectors are passed
into other reconstruction methods like Poisson surface re-
construction [13], it will certainly produce incorrect results,

(a) (b)

Figure 7: Poisson surface reconstruction [13] of the
Ness data set with the normal fields obtained by
(a) [8] and (b) BOT.

as shown in Figure 7 (a). Though being generally effec-
tive, the orientation propagation methods [5, 7, 8, 23] work
on propagating local information to obtain a global prop-
erty. However, the orientation of nearby normal vectors can
actually vary drastically due to sparsity, non-uniformity or
sharp features presented in P. In contrast, the in/out infor-
mation indicated by BOTs is more globally compliant with
the true orientation of P. In spite of its simplicity, it is thus
more robust to orientate the individual normal vectors by
the nearest oriented corners of a BOT.

6. CONCLUSION
In this paper, we presented the binary orientation trees
(BOTs) which are built from unoriented point clouds by
octree subdivision and associated with the orientation in-
formation derived through performing the visibility checks
from various viewpoints. Being conceptually simple, BOTs
are easy to implement and computationally efficient to com-
pute. BOTs resemble the traditional volumetric data rep-
resentations and are advantageous to applications, such as
surface reconstruction and orientation determination. Cur-
rently, BOTs are limited to complete data sets. For the fu-
ture work, we plan to utilize the data points carried by BOTs
to derive more useful metadata for volume reconstruction
and also guide the inside/outside space partitioning which



(a) (b) (c) (d)

Figure 8: MPU implicit surfaces based on the BOTs, which are reconstructed from the (a) Dinosaur, (b)
Rabbit, (c) Igea and (d) Santa data sets.

(a) (b) (c) (d)

Figure 9: More examples of globally consistent normal estimation by BOT and orientation propagation [8]
obtained from the Horse (18,532 points) and Ness (25,798 points) data sets. (a) and (c) results by BOT. (b)
and (d) results by [8].

cannot be fully resolved by visibility checks.

7. REFERENCES
[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The

quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software, 22(4):469–
483, 1996.

[2] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[3] T. Boubekeur, W. Heidrich, X. Granier, and
C. Schlick. Volume-surface trees. Computer Graphics
Forum, 25(3):399–406, 2006. (Eurographics 2006
Conference Proceedings).

[4] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible
surface generation by a priori tree structures. In ACM
SIGGRAPH 1980 Conference Proceedings, pages 124–
133, 1980.

[5] G. Guennebaud and M. Gross. Algebraic point set
surfaces. ACM Transactions on Graphics, 26(23):23,
2007. (SIGGRAPH 2007 Conference Proceedings).

[6] C.-C. Ho, F.-C. Wu, B.-Y. Chen, Y.-Y. Chuang, and
M. Ouhyoung. Cubical marching squares: Adaptive
feature preserving surface extraction from volume

data. Computer Graphics Forum, 24(3):537–545, 2005.
[7] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and

W. Stuetzle. Surface reconstruction from unorganized
points. In ACM SIGGRAPH 1992 Conference
Proceedings, pages 71–78, 1992.

[8] H. Huang, D. Li, H. Zhang, U. Ascher, and
D. Cohen-Or. Consolidation of unorganized point
clouds for surface reconstruction. ACM Transactions
on Graphics, 28(5):176, 2009. (SIGGRAPH Asia 2009
Conference Proceedings).

[9] C. L. Jackins and S. L. Tanimoto. Oct-trees and their
use in representing three-dimensional objects.
Computer Graphics and Image Processing, 14(3):249–
270, 1980.

[10] A. C. Jalba and J. B. T. M. Roerdink. Efficient
surface reconstruction from noisy data using
regularized membrane potentials. IEEE Transactions
on Image Processing, 18(5):1119–1134, 2009.

[11] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual
contouring of hermite data. ACM Transactions on
Graphics, 21(3):339–346, 2002.

[12] S. Katz, A. Tal, and R. Basri. Direct visibility of point
sets. ACM Transactions on Graphics, 26(3):24, 2007.
(SIGGRAPH 2007 Conference Proceedings).



[13] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson
surface reconstruction. In Proceedings of the 2006
Eurographics Symposium on Geometry Processing,
pages 61–70, 2006.

[14] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe.
Unconstrained isosurface extraction on arbitrary
octrees. In Proceedings of the 2007 Eurographics
Symposium on Geometry Processing, pages 125–133,
2007.

[15] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P.
Seidel. Feature sensitive surface extraction from
volume data. In ACM SIGGRAPH 2001 Conference
Proceedings, pages 57–66, 2001.

[16] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm.
ACM SIGGRAPH Computer Graphics, 21(4):163–169,
1987. (SIGGRAPH 1987 Conference Proceedings).

[17] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P.
Seidel. Multi-level partition of unity implicits. ACM
Transactions on Graphics, 22(3):463–470, 2003.
(SIGGRAPH 2003 Conference Proceedings).

[18] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient
simplification of point-sampled surfaces. In IEEE
Visualization 2002 Conference Proceedings, pages 163–
170, 2002.

[19] H. Samet. Quadtree, Octrees, and Other Hierarchical
Methods. Addison Wesley, 1989.

[20] I. Tobor, P. Reuter, and C. Schlick. Multi-scale
reconstruction of implicit surfaces with attributes from
large unorganized point sets. In Proceedings of the
2004 Shape Modeling International, pages 19–30, 2004.

[21] G. Turk and J. F. O’brien. Modelling with implicit
surfaces that interpolate. ACM Transactions on
Graphics, 21(4):855–873, 2002.

[22] H. Xie, K. T. McDonnel, and H. Qin. Surface
reconstruction of noisy and defective data sets. In
IEEE Visualization 2004 Conference Proceedings,
pages 259–266, 2004.

[23] H. Xie, J. Wang, J. Hua, H. Qin, and A. Kaufman.
Piecewise c1 continuous surface reconstruction of
noisy point clouds via local implicit quadric
regression. In IEEE Visualization 2003 Conference
Proceedings, pages 91–98, 2003.

[24] H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface
reconstruction using the level set method. In
Proceedings of the 2001 IEEE Workshop on
Variational and Level Set Methods, pages 194–201,
2001.


