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Abstract

One of the holy grails of computer graphics is the generation of
photorealistic images with motion data. To re-generate convincing
human animations might not be the most challenging part, but it is
definitely one of ultimate goals for computer graphics. Amongst
full-body human animations, facial animation is the challenging
part because of its subtlety and familarity to human beings.

In this paper, we like to share the work of lip-sync animation, part
of facial animations, as a framework for synthesizing lip-sync char-
acter speech animation in real time from a given speech sequence
and its corresponding texts.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
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1 Introduction

With the technological advance of computer graphics, and the pop-
ularity of 3D animations and vidoe games, realistic character ani-
mation is becoming more important. Facial and speech animation
is still difficult to sculpt because of complexity of the correlation
and interaction on the face. It is more challenging to have a charac-
ter model’s lips synchronized to the spoken speech, such that it is
still a labor-consuming process, requiring even millisecond-precise
key-framing.

Although several performance-driven approaches were proposed
[Guenter et al. 1998][Ma et al. 2008][Weise et al. 2011], the cap-
tured performance is hard to re-use. Furthermore, the transitions,
a.k.a. coarticulation, between words or phonemes, play a major
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role in speech animation and need to be adjusted carefully. Coar-
ticulation indicates the situation in which a phoneme or speech
sound is influenced by a preceeding or following ones. The mouth
shape depends on not only the current phoneme, but also its con-
text. Therefore, it is unavoidable to manual adjust the captured per-
formance.

In this paper, a framework to synthesize lip-sync character speech
animation in real time is proposed. For each phoneme, one or mul-
tiple dominated animeme models (DAMs) are first learned from
a training set of speech-to-animation control signal (e.g. the char-
acter controls used in Autodesk Maya or cross-mapped mocap lip-
motions). Then, in the synthesis phase, given a novel speech se-
quence, theDAMs are used to synthesize the corresponding speech-
to-animation control signals, which in turn are used to generate the
lip-sync character speech animation.

To summarize the contributions of this paper:

1. A framework is proposed to synthesize lip-sync character
speech animation in real time.

2. DAM is presented to model coarticulation better.

3. Multiple DAMs are used to handle larger intra-animeme vari-
ations.

4. Instead of generating hard-to-fine-tune vertex deformations,
high-level control signal of 3D characters is synthesized. That
makes it easier to integrate into operating animation produc-
tion pipeline.

2 Related Work

The advantage of the physically-based methods [Choe et al.
2001][Sifakis et al. 2005] over the parameterized/blend-shape ones
is extensibility: the faces can be animated more realistically.
However, the muscle-simulation is very expensive, and hence re-
duces the applicability to interactive controller. Data-driven ap-
proaches [Deng and Neumann 2006][Cao et al. 2004] form a graph
for searching the given sentences. Nevertheless, they still suffer
from missing data or duplicate occurrence. Parameterized tech-
niques[Chuang and Bregler 2005] for speech animation are the
most popular methods because of simplicity. Sifakis[Sifakis et al.
2006] presented a physically-based approach which can interact
with objects while simulating, but the simulation cost is really high.
Machine-learning based methods [Chang and Ezzat 2005][Deng
et al. 2006][Kim and Ko 2007][Wampler et al. 2007] learn the
statistics for phoneme-to-animation correspondences, to connect
animation up to speech directly and reduce these searching efforts.

Some recent methods [Sifakis et al. 2006][Kim and Ko
2007][Wampler et al. 2007] used the concept of animeme, a shape
function, to model the sub-viseme signal to increase the accuracy of
phoneme fitting. Kim and Ko models the viseme within a smaller
sub-phoneme range with a data-driven approach. Coarticulation
is modeled via a smooth function in their regularization with the
parameters found empirically. However, it has to resolve conflict-
ing and insufficient records in the training set. Sifakiscite[Sifakis



et al. 2006] modeled the muscle-control-signal animeme (physeme
in their work) for each phoneme, and concatenate these animemes
for words. They found that each phoneme has various similar ani-
memes with slight variations due to coarticulation, which is mod-
eled with linear cross-fade weighting in a diphone or triphone fash-
ion.

We learned from previous methods and improved the deficiencies
in them. The analysis in the animeme space has significant im-
provements over the viseme analysis. In addition, we also solve for
the hidden dominance functions, and extend coarticulation beyond
the simpler diphone or triphone model. Moreover, the synthesis
process is much simpler and faster because the models used for
generating the results are trained in offline phase.

3 Dominated Animeme Models (DAMs)

Firstly, we need to model the relationship between phonemes (from
a given text script) and the corresponding animation control sig-
nal C(t), a.k.a. animeme, the animation representation of the
phoneme. Due to coarticulation, we model the animation con-
trol signal C(t) with the product of two functions: the animeme
function and its dominance function. The animeme function A(t)
controls the intrinsic mouth shapes when used alone, and the domi-
nance function D(t) controls their individual influence and fall-off
for a sequence of phonemes, the coarticulation. Dominated ani-
meme model (DAM) is modeled as:

C(t) = D(t)A(t), t ∈ [−∞,∞]
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Inspired by [Cohen and Massaro 1993], the dominance function
is modeled as Eq. 2 where σ is the phoneme specific parameter
affecting the range of influence, and ε is a small constant to prevent
dividing by zero. Putting multiple phonemes together to get the full
sequence of animation control signal, we simply concatenate these
DAMs with the summation of their normalized values:

C∗(t) =

J
∑

j=1

Cj(tj) =
∑

j

Dj(tj)Aj(tj), (2)

where j = 1, 2, ..., J indicates the j-th phoneme in the given
phoneme sequence, and tj = (t − sj)/dj is the normalized local
time for each phoneme activation, where sj is the starting time-
stamp of the j-th phoneme and dj is its duration.

4 System Overview

The whole system is illustrated in Figure. 1 with two phases: train-
ing (left) and synthesis (right). In the training phase, the system
takes as input the captured lip-motions or the animation control
signal (e.g. animation data from Autodesk Maya) If inputs are
from a speech video or 3D lip-motions captured by a mocap fa-
cility, the data in the vertex domain will be first cross-mapped to
the control signal domain. Then, the speech and its corresponding
texts are aligned with SPHINX-II [Huang et al. 1993] to obtain the
aligned scripts (phoneme sequence), which contain phonemes with
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Figure 1: System flowchart.

their starting time-stamps and durations in the speech. The aligned
scripts and animation control signal C(t) are used as training ex-
amples to construct the DAMs for future novel speech animation
synthesis.

In the synthesis phase, we take as input a novel speech and its cor-
responding texts, and use SPHINX-II again to obtain the aligned
scripts. From the scripts, the DAMs are concatenated to generate
the animation control signal C∗. Finally, the animation control sig-
nal C∗ is used to animate the character (face) to generate the lip-
sync character speech animation.

4.1 Estimating DAMs in training phase

According to the aligned scripts (phoneme sequence), every
phoneme can have many corresponding animation control signals.
Based on these training examples, we can construct the phoneme’s
DAM(s). However, we found it is difficult to decouple the animeme
function and its dominance function gracefully if we construct a
single DAM for each phoneme due to large intra-animeme varia-
tions. Instead, for each phoneme, multiple DAMs, or modes, are
used.

Assuming each mode of each phoneme appears in the sequence ex-
actly only once and denoting the j-th dominance function Dj(i)
at time i as a fixed value Di

j , the estimation of the polynomial
function Aj(t) can be reduced to find the polynomial coefficients

a0

j , a
1

j , ..., a
M
j . Then, Eq. (2) can be rewritten as:

C(i) =
J
∑

j=1

Di
j

[

M
∑

m=0

am
j (tij)

m

]

, (3)

where tij = (i − sj)/dj is the normalized local time-stamp from
the activation of the j-th phoneme. In a regression manner, we can
set the partial derivative of regression error R with respect to the
m-th coefficient am

j for the j-th phoneme to zero. The least square
fitting for regression is:
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Figure 2: An animeme-graph example for synthesizing “Graph”.
There are multiple DAMs (modes) for one phoneme (with the same
color). The suitable sequence (denoted by solid circles and lines) is
selected by A* algorithm.

where F is the column-concatenated vector formed for each ele-
ment fi. Since the unknowns am

j are linear in F, the problem is
essentially a linear least-square fitting. By setting all partial deriva-
tives to zero and arranging Eq. (4), we can obtain the following
matrix representation:
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where D is the dominance matrix, A is the coefficient vector we
want to solve, and C is the observed values at each time i, so the
minimum error to the regression fitting can be written in the stan-
dard normal equation with the following matrix form:

(DT
D)A = D

T
C, (5)

Here, we can minimize the regression Eq. (4) with the same mech-
anism. Since the parameter σj for regression is non-linear, a Stan-
dard Gauss-Newton iterative solver is used to approach the mini-
mum of the regression error R. An EM-style strategy is employed
to iterates between the estimation of the animeme function Aj(t)
and the optimization for the dominance function Dj(t).

• The E-step involves estimating the polynomial coefficients
am
j for each animeme function Aj(t) by solving a linear re-

gression using the standard normal equation.

• The M-step tries minimizing the regression error to estimate
the non-linear dominance functionDj(t).

4.2 Synthesizing with DAMs

In the synthesis phase, we want to generate the control signals ac-
cording to the input phoneme sequence. Since some phonemes may
have multiple modes, we have to decide which mode should be used
for each phoneme. To construct the output animation control signal
requires selecting the most suitable mode for each phoneme, and
then directly use Eq. (2) to concatenate the DAMs in the sequence.

Giving a phoneme sequence j = 1, 2, ..., J and possible modes
DAMg

j (g = 1, ..., Gj , whereGj is the number of modes) for each
phoneme j, the animemes can form an animeme-graph as shown in

Table 1: The models used in this paper and the accompanying
video.

model vertex# face# control#

Afro-woman 5,234 5,075 7
Boy 6,775 6,736 7
Child 6,991 6,954 16
Old-hero 8,883 8,738 8
Court-lady 1,306 1,307 7

Figure. 2. The selection of suitable modes for the phoneme se-
quence can be treated as a graph search problem, and A* algorithm
is used in our implementation. Since we want to find a compro-
mise between the likelihood of the modes and the smoothness in
the animation, the cost of each node in the animeme-graph is set as:

E = wcEc + wsEs, (6)

where Ec is a data term, which represents the likelihood of the
mode DAMg

j in the training set linked with its previous and next

phonemes, Es is the smoothness term computing the C2 smooth-
ness on the joint frame of every DAMg

j (g = 1, ..., Gj) of the

current phoneme j and every DAMg

j−1
(g = 1, ..., Gj−1) of its

previous phoneme j − 1, and wc and ws are the weights of the er-
ror terms. We used wc = 1000 and ws = 1 for all results in this
paper.

5 Result

The training set involves 80 sentences and about 10 minutes of
speech context with unbiased content. In the training phase, con-
structing the DAMs costs about 50∼60 minutes per control on a
desktop PC with an Intel Core2 Quad Q9400 2.66GHz CPU and
4GB memory. For synthesizing a lip-sync speech animation, the
animation control signal formed by our DAMs are generated in real
time (i.e. 0.8 ms. per phoneme on average). Table. 1 shows geo-
metrical data used in this paper.

Figure. 4 shows a part of signal fitting for these results by contin-
uous lip motions from left to right. According to the training data,
the lips should be closed during the phoneme “P” and opened for
other phonemes appropriately. At the last frame of the sequence,
the mouth closes to prepare for the following sentence. The re-
construction result of the Cohen-Massaro model is too smooth at
some parts, such that consecutive phonemes are greatly influenced,
i.e. they span too much. The MMM formulates the fitting and
synthesis as a regulation problem. by fitting each phoneme as a
multidimensional Gaussian distribution. It soloves lip-sync prob-
lem by minimizing an energy function. The reconstructed speech
by MMM has good timing but lack prominent features, while our
results by DAM reach closer to the peaks of the training data.

6 Conclusion

With pre-processed learning phase, given a phoneme sequence, the
DAMs are used to generate animation control signals, which can
then be fed directly into Autodesk Maya or similar packages in real
time. Even though the synthesized results may not be perfect, they
can be easily fine-tuned interactively. Our current work focuses on
stylized characters and our next step is to make it work for realistic
talking heads.
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Figure 3: The comparison of training data (the 1st raw) and the
synthesized results of DAM (the 2nd raw), Cohen-Massaro model
(the 3rd raw), and MMM (the 4th raw), while speaking “popular”
by Afro-woman.
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Figure 4: The comparison of the signal fitted in Figure. 3 by DAM,
Cohen-Massaro Model, and MMM with the captured one. The y-
axis shows one of the coordinates of a control.
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