
Pacific Graphics 2010

P. Alliez, K. Bala, and K. Zhou

(Guest Editors)

Volume 29 (2010), Number 7

Binary Orientation Trees for Volume and Surface

Reconstruction from Unoriented Point Clouds

Yi-Ling Chen†1 Bing-Yu Chen2 Shang-Hong Lai1 Tomoyuki Nishita3

1National Tsing Hua University, Taiwan 2National Taiwan University, Taiwan 3The University of Tokyo, Japan

Abstract

Given a complete unoriented point set, we propose a binary orientation tree (BOT) for volume and surface repre-

sentation, which roughly splits the space into the interior and exterior regions with respect to the input point set.

The BOTs are constructed by performing a traditional octree subdivision technique while the corners of each cell

are associated with a tag indicating the in/out relationship with respect to the input point set. Starting from the root

cell, a growing stage is performed to efficiently assign tags to the connected empty sub-cells. The unresolved tags

of the remaining cell corners are determined by examining their visibility via the hidden point removal operator.

We show that the outliers accompanying the input point set can be effectively detected during the construction of

the BOTs. After removing the outliers and resolving the in/out tags, the BOTs are ready to support any volume or

surface representation techniques. To represent the surfaces, we also present a modified MPU implicits algorithm

enabled to reconstruct surfaces from the input unoriented point clouds by taking advantage of the BOTs.

1 Introduction

Hierarchical space partitioning structures, such as oc-

trees [JT80], Binary Space Partitioning (BSP) trees [FKN80]

and k-d trees [Ben75], are extensively exploited in various

research fields. The simplicity of constructing such struc-

tures makes them very popular in many computer graph-

ics applications in order to achieve better efficiency or to

be scaled toward large data sets. Most of the existing hier-

archical structures put emphasis on partitioning the space to

produce a collection of subsets of the data satisfying a given

error criterion. However, few of them attempted to combine

additional semantic information to assist the processing of

the input data sets.

In this paper, we present the binary orientation trees

(BOTs) for representing unoriented and unstructured point

clouds as well as the semantic metadata for representing

their volumes and surfaces, A BOT roughly splits the space

into two parts, i.e. inside or outside, by exploiting the ob-

servation that any point not belonging to a model can only

† This work was done while the first author visited The University

of Tokyo.

(a) (b)

Figure 1: The BOT splits the space into inside/outside and

assists the surface reconstruction process from the IGEA

data set. The BOT is rendered by the leaf nodes of level 3

with the corners tagged as in (shown in (a) by the orange

points) and out (shown in (b) by the green points), respec-

tively.

be either visible or invisible from various viewpoints. Given

a complete point set, a BOT is built by performing the tra-

ditional octree-based space partitioning technique while the

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.



Chen et al. / Binary Orientation Trees

corners of each cell are associated with a tag indicating the

in/out relationship with respect to the input point set.

Conceptually, the BOTs are similar to the signed distance

fields derived from an explicit or implicit surface represen-

tation. Although it is simple to perform in/out checks if an

implicit surface or polygonal mesh approximating the 3D

model is given, to understand where the inside/outside part

is with respect to a discretely sampled point cloud is not a

trivial task, especially when the orientation information is

not available. Besides the in/out information stored in the

tree nodes as the traditional octree-based volume data repre-

sentation, the BOT also contains the surface points sampled

from the original model’s surface or filtered from the original

point cloud. Hence, the BOTs contain sufficient information

for representing the volume and surface of the input point

set and ready to support any volume or surface representa-

tion techniques.

The kernel of building the BOTs is a tagging algorithm

that separates the exterior points of a raw point set from

the interior ones. Starting from the root cell with all corners

tagged as out, a growing stage is performed to efficiently

assign tags to the connected empty sub-cells. Based on the

observation that the cell corners are either visible or “oc-

cluded” by the input point cloud when viewed from outside,

the untagged corners can be effectively classified into inte-

rior or exterior points by examining their visibility via the

hidden point removal (HPR) operator [KTB07].

It is worth noting that BOTs possess some advantages not

shared by the traditional octree-based volume data represen-

tation. First of all, it can be directly computed from raw data

points lacking of essential information like normal vectors.

Since it keeps the original point set, it can be adaptively re-

fined when necessary. Besides, the in/out information car-

ried by a BOT can be exploited to reconstruct the model sur-

face from the surface points. If the original input point cloud

contains some outlier points, the outliers will be removed

during the BOT construction.

The rest of this paper is organized as follows: we firstly

review some related work in Section 2 and then present the

algorithm of constructing the BOTs while removing the out-

liers in Section 3. In Section 4, we show the application

to surface reconstruction from the input unoriented point

sets through a modified MPU implicits algorithm [OBA∗03]

based on the BOTs. Sections 5 and 6 demonstrates the ex-

perimental results and concludes this paper, respectively.

2 Related Work

Hierarchical space partitioning data structures are ubiqui-

tous in computer graphics applications as the need of de-

composing and structuring the input data sets. The basic

approaches of building such structures are to recursively

subdivide a root cell embedding a scene or an object until

all leaf nodes satisfy a certain user-specified criterion. The

simplest space partitioning strategies are perhaps the 1-to-4

scheme for quadtrees in 2D and 1-to-8 scheme for octrees in

3D [JT80, Sam89], or even uniform grids. Binary space par-

titioning (BSP) [FKN80] is a generic process of recursively

dividing a scene into two parts by a set of the best split-

ting hyperplanes. The k-d tree structure is a special case of

the BSP trees and is constructed through orthogonal space

separation [Ben75]. Recently, Boubekeur et al. [BHGS06]

developed the Volume-Surface Trees, which switch the stan-

dard octree subdivision to quadtrees as soon as the local area

associated with the current node passes a height field test, in

order to improve the imbalanced clustering of pure volume-

based space decomposition.

Due to the nature of producing a hierarchy of data

clusters, spatial partitioning techniques are widely applied

for efficient data processing and manipulation. In geomet-

ric modeling and processing, surface reconstruction from

point clouds has attracted considerable attentions [HDD∗92,

GG07, Kaz05]. The partition-of-unity approaches aim to re-

construct the surfaces formed by smoothly blended local

implicit patches through adaptive octree [OBA∗03] or BSP

tree [TRS04] approximation. Several approaches were de-

veloped to compute an indicator function of a shape from a

point set by solving Poisson equations [KBH06], wavelets

[MPS08] or a generalized eigenvalue problem [ACSTD07].

Following the pioneering work of Marching Cubes algo-

rithm [LC87], which extracts polygonal meshes from vol-

ume data, a number of iso-surface extraction algorithms

have been developed for the purpose of feature preserva-

tion [KBSS01,JLSW02] or topology consistency [HWC∗05,

KKDH07].

In [JR09, ZOF01], surface reconstruction was accom-

plished by identifying the exterior (interior) volumetric grid

points, which is similar to the construction of the BOTs, in

order to define an initial implicit surface. However, the reg-

ular grids used in these methods are associated with a scalar

field derived from computing a distance transform by PDEs

to guide the tagging process. Xie et al. [XMQ04] also pro-

posed a regular volumetric structure called “mono-oriented

regions” computed by active contour method, which carries

similar semantic information as the proposed BOTs. They

were utilized to determine the orientation of locally fitted

implicit surfaces through a voting process. The drawbacks

of such structures include that they are not adaptive to the

feature sizes of input data sets and the high computational

cost.

3 Binary Orientation Trees

3.1 Overview

A binary orientation tree (BOT) T is an octree-like hierar-

chical structure built from a point set P with all cell corners

associated with a tag indicating the in/out relationship with

respect to P . Only the spatial positions of the data points

are assumed to be available. To obtain the in/out informa-

tion from a raw point set is a challenging problem without

the underlying surface. The basic idea is to identify the in-

terior and exterior points according to their visibility from

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b) (c)

Figure 2: The construction process of a BOT. (a) Octree subdivision of a point set P . (b) The growing process identifies a set of

mono-oriented cells tagged as out (the blue cells with + tags). (c) The carving process resolves the remaining untagged corners

and identifies the mono-oriented cells tagged as in (the green cell with − tags) and the bi-oriented cells (the red ones).

various viewpoints. Hidden point removal (HPR) is a simple

method that determines the visible points among a point set

from a specific viewing direction through a spherical flipping

transformation and convex hull computation [KTB07]. By

exploiting the HPR operator, the exterior points will be ob-

served when viewed from outside, while the interior points

will be occluded by P . Before explaining the construction

process, we first define some notations and examine some

properties of BOTs in this section.

A cell of a BOT T is mono-oriented if the space en-

closed by it is intrinsically the same, i.e. either inside or

outside, otherwise it is called bi-oriented. It is obvious that

an empty cell is certainly mono-oriented. A maximal mono-

oriented cell is not contained by other mono-oriented cells

and is self-orientable since the tags of the sub-cells can be

directly determined by their parent cell. As a result, it is not

necessary to perform further subdivision as soon as the cur-

rent cell becomes mono-oriented during the construction of

the BOT. It is worth noting that a cell with all corners associ-

ated with the same tag is not necessary to be mono-oriented.

For example, the root cell of T is typically assigned a tag

out for each corner. However, it is obvious that it consists of

both the interior and exterior regions of P .

3.2 BOT Construction

Given a complete point set P , i.e. there exist no holes in P ,

the construction of a BOT T consists of two main stages:

partitioning and tagging.

• Partitioning: Initially, P is inserted into an axis-aligned

bounding box as the root of T . Then, P is decomposed

into a collection of subsets Pi through the octree subdivi-

sion. We adopt the simple criteria of the size of Pi as well

as the surface variation [PGK02] measuring if the points

in Pi are isotropically distributed or well approximated to

a local plane to guide the subdivision of T . The recursion

of the octree subdivision is stopped as soon as the current

node becomes empty.

• Tagging: In this stage, each corner of a cell is classified as

in or out through a tagging process. Exploiting the prop-

erty of mono-oriented cells, once a corner of an empty cell

is tagged, the tags of the rest corners can also be deter-

mined. As a result, a growing process is performed to effi-

ciently tag the connected empty regions. For non-empty

cells where the tags cannot be explicitly determined, a

carving process is carried out to check the visibility of

the untagged corners by using HPR.

Figure 2 illustrates an example of the BOT construction.

Note that since HPR works in 2D, a BOT can be constructed

in 2D as well by replacing the octree with quadtree.

3.2.1 Growing

To tag a sufficiently partitioned T , we start by growing the

mono-oriented cells surroundingP into regions. Apparently,

the root of T should be assigned the out tag to each cor-

ner. Beginning with these corners explicitly tagged, the con-

nected empty cells can also be explicitly tagged. Though

this region growing problem can be resolved by some ex-

isting solutions like front propagation, we devise a recursive

back-tracing tagging procedure, which can be easily realized

in a tree structure like T . Algorithm 1 depicts the pseudo-

code for the growing process. For an intermediate node, the

tag_tree() routine assigns the tags to its subtree(s) by

back tracing from the leaves containing its tagged corners

and propagating the tags if an empty cell is encountered.

Note that the back_traciing() routine is launched if

the currently visited node is a leaf or has been previously

checked. The tag_corners_if_empty() routine sets

all corners of an empty cell as long as one of them is tagged.

3.2.2 Carving

After the growing process, most of the remaining untagged

corners belong to the bi-oriented cells, where the point set

P “pass” through. Among them, some are interior points oc-

cluded by P . As a result, we determine the tags according to

their visibility from various viewing directions by applying

the following iterative process.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

Algorithm 1 The pseudo-code of the growing process.

tag_tree(C)

begin

C
′
← all leaves containing tagged corners of C;

if C is not leaf and not traced then

for all cells Clea f in C′ do

call back_tracing(Clea f );

end for

end if

if C is not leaf then

for all subcells Csub of C do

call tag_tree(Csub);

end for

end if

end

back_tracing(C)

begin

call tag_corners_if_empty(C);

if C is not leaf then

set C as traced;

for all subcell Csub of C do

call tag_corners_if_empty(Csub);

end for

end if

if C is not root then

Cparent ← parent cell of C;

call back_tracing(Cparent );

end if

end

1. Collect the untagged corners in BOT to form P ′.

2. Perform HPR on P ∪P ′ from a pre-selected viewpoint.

3. “Carve out” the visible points in P ′ and assign them an

out tag.

4. Pick up the next viewpoint and repeat Step 2.

5. If no visible point belonging toP ′ can be detected, termi-

nate the process. The remaining points in P ′ are assigned

the in tag.

One reason that the tagged points in P ′ are excluded from

the next iteration is that the points in P ′ sometimes also oc-

clude each other according to the viewpoints though it is

rare. Nevertheless, it is unnecessary to keep the observed and

tagged points during each iteration.

The viewpoint selection with respect to various input

point sets is very difficult, especially when some points ly-

ing within a concave region and can only be observed from

some specific viewpoints. Due to the fact that P ′ somewhat

occludes P , if all points in P is observed during the carv-

ing process outlined above, it is very likely that all points

in P ′ are also observed. We thus use a mask to record if

a point in P has been observed or not. In the beginning of

the carving process, a set of pre-defined viewing directions,

such as the main axes of the bounding box of T , can be

used to carve out most exterior points in P ′. Since the unob-

(a) (b)

Figure 3: Outlier removal during the construction of the

BOT. (a) An isolated outlier cell. (b) A cluster of the outlier

cells.

served points are usually clustered due to the occlusion from

the previous viewing directions, we randomly choose an un-

observed point in P and search for the nearest point in P ′

whose distance to each point p∈P is larger than a threshold

δ and already tagged as out as the new viewpoint to expose

the unobserved regions. The purpose of δ is to prevent from

selecting a viewpoint too close to P , which may cause the

line-of-sight to penetrate into P and disocclude the interior

region. Obviously, the proposed tagging algorithm is limited

to complete point clouds since the holes contained in P re-

veals its interior region when viewed from specific viewing

directions.

3.3 Outlier Removal

In this subsection, we explain how outliers embedded in the

input point cloud P can be effectively detected during the

construction of the BOTs. Conceptually simple, the obser-

vation is that the outliers are usually sparse and disorderly

distributed, and thus they can hardly occlude the cell corners

surrounding them. During the tagging stage, the corners of

the cells containing the outliers will most likely be observed.

To remove the outliers, we thus search for the non-empty

leaves of a BOT with all corners assigned the same tag and

mark the enclosed points as the outliers. As illustrated in

Figure 3, the isolated outlier cells may be identified by the

growing process. When the number of outlier cells increases,

the growing process alone may not be able to resolve the tags

of the outlier cells. However, the corners of an outlier cell

will still be observed through various lines-of-sight passing

through the outliers during the carving process.

Note that this simple outlier detection procedure works

under the assumption that some corners of the inlier cells

are occluded by the inliers. Although this assumption is not

guaranteed to be valid all the times, it is quite effective as

shown in Section 5 and works for a large variety of real-

world data sets if partitioned sufficiently.

4 Volume and Surface Reconstruction

To understand the inside/outside information with respect to

a digital model is essential for many geometric modeling and

processing problems. Note that the in/out tags carried by a

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b) (c) (d)

Figure 4: The isosurfaces extracted from the BOT volumetric representation by the Marching Cubes algorithm [LC87]. (a) and

(b): meshes consisting of 19,804 and 79,460 triangles extracted from BOT level 6 (64×64×64 grids) and 7 (128×128×128

grids) of the IGEA data set, respectively; (c) and (d): meshes consisting of 10,024 and 40,584 triangles extracted from BOT

level 6 (64×64×64 grids) and 7 (128×128×128 grids) of the ROCKERARM data set, respectively.

BOT are intrinsically the same as the traditional volumet-

ric representations and can thus be accepted by many exist-

ing iso-contouring methods such as the well-known March-

ing Cubes algorithm [LC87]. Because the BOT carries the

input point cloud P , it is adaptively refinable and can be

converted into other volumetric representations, such as the

hermite data [JLSW02], by embedding other information

like intersection and the corresponding normal direction de-

rived from P . Due to the self-orientable property of mono-

oriented cells, it is only necessary to tag the bi-oriented re-

gions when being refined. In addition, because the tags of

the mono-oriented cells at finer levels are implicitly recorded

by their maximal mono-oriented parent, a BOT is a more

compact representation than regular grids. Figure 4 illus-

trates several examples of volume reconstruction by using

the BOTs.

There are many possibilities to extend the existing surface

reconstruction algorithms to deal with unorganized point

clouds with the aid of the BOTs. For example, the cell cor-

ners tagged as in or out themselves can serve as or may

be used as a hint to create the off-surface constraints when

reconstructing the variational implicit surfaces interpolat-

ing a given point cloud [TO02]. In this paper, we chose to

extend the MPU implicits algorithm [OBA∗03] for recon-

structing surfaces with the BOTs by relaxing the require-

ment of normal vectors when reconstructing the surface from

point cloud.

The MPU implicits algorithm is an octree-based local ap-

proximation method that computes a local shape function

Qi for each cell Ci by fitting a general quadric or bivariate

quadratic polynomial to the local point set Pi contained by

Ci. To determine the orientation of Qi, the corners qn of Ci

are used as auxiliary points and a general quadric is com-

puted by minimizing

1

∑ωi(p j)
∑

p j∈Pi

ωi(p j)Qi(p j)
2+

1

m

m

∑
n=1

(Qi(q
n)−dn)

2
, (1)

where ωi is a quadratic B-spline function to generate the

weights of p j and dn is the average signed distance com-

puted from the nearest six points p j ∈Pi of qn by using nor-

mal vectors n j. Note that the in/out tags of qn is provided by

the BOTs, the signed distance dn can be estimated similarly

without n j.

Originally, a bivariate quadratic polynomial is defined in

a local coordinate system (u,v,w) with the origin at the cell

center ci and the positive direction of w coincides with the

direction of n̄, which is the average normal vector of n j.

Without using the normal vectors, we fit a bivariate quadratic

polynomial by performing local covariance analysis on Pi to

find out the best fitted plane as the local coordinate system

and correct the orientation of the plane normal n′ by maxi-

mizing

m

∑
n=1

sign(qn) · (qn
− ci) ·n

′
, (2)

where sign(qn) is a binary function that returns 1 or −1 if

qn is tagged as + or −, respectively. Note that this simple

method can also be applied to obtain the globally consistent

orientation of an unsigned normal field, which was typically

accomplished by using the orientation propagation methods

based on traversing a corresponding minimal spanning tree

[HDD∗92, XWH∗03, GG07, HLZ∗09].

5 Experimental Results

The HPR operator was implemented by using the Qhull al-

gorithm [BDH96] for convex hull computation. The com-

plexity of tagging a BOT does not greatly increase with data

sizes since a subset of a dense data set P is sufficient to

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b) (c) (d)

Figure 5: The outlier removal results during the construction of the BOTs. The red cubes are the cells containing the detected

outliers. (a) TORUS data set (4,600 points with 500 outliers). (b) ROCKERARM data set (30,272 points with 700 outliers). (c)

and (d) BOTTLE data set (35,086 points with 800 outliers), where 759 outliers are removed in (c) and the rest are detected by

the second round of the BOT tagging process.

Table 1: Statistics of reconstructing MPU implicit surfaces

based on BOT from several data sets. The computation times

for Tagging and MPU are represented in seconds.

Data Sets Point # Particles # Tagging MPU

TORUS 4,800 3,591 0.188 1.844

DINOSAUR 36,988 22,301 2.891 1.985

RABBIT 67,038 17,408 1.391 3.406

SANTA 75,781 17,572 1.765 5.266

IGEA 134,345 32,940 2.547 6.828

(a) (b)

Figure 6: Globally consistent normal estimation by BOT

and orientation propagation [HLZ∗09]. The oriented point

clouds are rendered with the normal fields aligned by (a)

BOT and (b) [HLZ∗09].

hide the BOT corners inside P when performing the visibil-

ity check. Therefore, we take advantage of the BOT to com-

pute a particle for each non-empty cell Ci, which averages

the points Pi in Ci. Empirically, we used the particles at level

7 or 8 of the BOTs for the tagging process. Experiments are

conducted by using some real-world data sets obtained from

3D scanning or image-based 3D reconstruction from image

sequences, such as the DINOSAUR. Note that a sparse data

set like the TORUS (4,800 points) is also included in our ex-

periments.

Figure 5 demonstrates the capability of outlier removal

(a) (b) (c)

Figure 7: Globally consistent normal estimation by BOT

and orientation propagation [HLZ∗09]. from the raw NESS

point set (25,798 points) shown in (a). The oriented point

clouds are rendered with the normal fields aligned by (b)

BOT and (c) [HLZ∗09].

during the construction of the BOTs. Randomly generated

outliers are appended to the input point clouds for the BOT

construction. Generally, all of the outliers can be effectively

detected. In Figure 5(c), some outliers were not detected be-

cause the increasing number of outliers caused some nearby

cell corners to be hidden during the tagging process. After

removing the detected outliers, such hidden corners are dis-

occluded and the remaining outliers can be detected by per-

forming the tagging process again. It is interesting to note

that Xie et al. [XMQ04] exploited a similar idea that out-

liers will be enveloped by mono-oriented regions during the

growing of the active contour models for outlier detection.

However, their method can only deal with a small number

of outliers. In the cases shown in Figure 5, it is very likely

that the outliers widely spread around will prevent the ac-

tive contour models from reaching the real data points. Note

that BOTs are especially effective against distant outliers be-

cause they can be easily separated from inliers if the input

point set is partitioned sufficiently. An outlier is not distin-

guishable from inliers if it is located near the inliers and is

grouped into the same cell with some inliers even though

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b)

Figure 8: Poisson surface reconstruction [KBH06] of the

NESS data set with the normal fields obtained by (a)

[HLZ∗09] and (b) BOT.

(a) (b)

(c) (d)

Figure 9: BOT construction from a noisy ((a) TORUS) and

an incomplete ((c) LAURANA) point cloud with the orange

points indicating the corners tagged as in. (b)(d) are the cor-

responding MPU implicit surfaces.

the stopping criterion of octree subdivision is satisfied. Nev-

ertheless, outliers are generally of a certain distance from

inliers, which is separable by standard octree subdivision.

The modified MPU implicits algorithm explained in Sec-

tion 4 was applied to several data sets and Table 1 sum-

marizes the computation times measured on a desktop PC

equipped with an Intel Core 2 2.93GHz CPU and 2GB main

memory. Figure 11 demonstrates the MPU implicit surfaces

reconstructed by using the BOTs. One can see that the BOTs

maintain the efficiency of the MPU implicits algorithm while

enabling it to deal with unoriented data sets.

We have also exploited the BOTs to align an unsigned

normal field estimated from P with each normal vector am-

biguously directed inward or outward. For comparison, we

chose the state-of-the-art orientation propagation algorithm

[HLZ∗09]. As shown in Figures 6, 7 and 10, the point sets

are rendered with the aligned normal fields by splating. With

back culling enabled, one can observe that some data points

become invisible due to the erroneously directed normals ob-

tained by [HLZ∗09], while the results by BOTs do not have

such problems. If the data points with erroneous normal vec-

tors are passed into other reconstruction methods like Pois-

son surface reconstruction [KBH06], it will certainly pro-

duce incorrect results, as shown in Figure 8(a). Though be-

ing generally effective, the orientation propagation methods

[HDD∗92, XWH∗03, GG07, HLZ∗09] work on propagating

local information to obtain a global property. However, the

orientation of nearby normal vectors can actually vary drasti-

cally due to sparsity, non-uniformities or sharp features pre-

sented in P . In contrast, the in/out information indicated by

BOTs is more globally compliant with the true orientation of

P . In spite of its simplicity, it is thus more robust to orientate

the individual normal vectors by the nearest oriented corners

of a BOT.

Figure 9 demonstrates the BOT tagging failures from a

noisy and incomplete data set, respectively. As shown in Fig-

ure 9(a), the noisy data points cause disturbance during visi-

bility checks, resulting in the interior regions of the model to

shrink, and some octree corners tagged as out will be embed-

ded within the noisy data points. As shown in Figure 9(c), an

incomplete point cloud cannot effectively occlude the inte-

rior region of the model, which is erroneously carved out

during the tagging process (the bottom part of the model).

The inappropriate in/out tagging will cause errors in the fol-

lowing processing, e.g. MPU implicits reconstruction (Fig-

ure 9(b)(d)).

6 Conclusion

In this paper, we presented the binary orientation trees

(BOTs) which are built from unoriented point clouds by oc-

tree subdivision and associated with the orientation informa-

tion derived through performing the visibility checks from

various viewpoints. Being conceptually simple, BOTs are

easy to implement and computationally efficient to compute.

BOTs resemble the traditional volumetric data representa-

tions and are advantageous to applications, such as surface

reconstruction and orientation determination.

Since the observation of separating points not belonging

to the input point set into inside/outside according to visibil-

ity also applies to different cases other than octree corners, it

enables us the flexibility to use other spatial decomposition

schemes more adaptive against the input point sets accord-

ing to the applications. Currently, BOTs are limited to com-

plete data sets. For the future work, we plan to utilize the

data points carried by BOTs to derive more useful metadata

for volume reconstruction and also guide the inside/outside

space partitioning which cannot be fully resolved by visibil-

ity checks.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b) (c)

Figure 10: Globally consistent normal estimation by BOT and orientation propagation [HLZ∗09] obtained from the raw HORSE

(18,532 points) data set shown in (a). The oriented point clouds are rendered with the normal fields aligned by (b) BOT and

(c) [HLZ∗09].

Acknowledgment

The authors sincerely appreciate the inspiring discussions

about this work with Prof. Yoshihiro Kanamori (University

of Tsukuba, Japan) and Yonghao Yue. This work was sup-

ported by National Science Council, Taiwan, under the grant

NSC97-2917-I-007-113.

References

[ACSTD07] ALLIEZ P., COHEN-STEINER D., TONG Y.,

DESBRUN M.: Voronoi-based variational reconstruction

for unoriented point sets. In Proceedings of the 2007 Eu-

rographics Symposium on Geometry Processing (2007),

pp. 39–48.

[BDH96] BARBER C. B., DOBKIN D. P., HUHDANPAA

H.: The quickhull algorithm for convex hulls. ACM

Transactions on Mathematical Software 22, 4 (1996),

469–483.

[Ben75] BENTLEY J. L.: Multidimensional binary search

trees used for associative searching. Communications of

the ACM 18, 9 (1975), 509–517.

[BHGS06] BOUBEKEUR T., HEIDRICH W., GRANIER

X., SCHLICK C.: Volume-surface trees. Computer

Graphics Forum 25, 3 (2006), 399–406. (Eurographics

2006 Conference Proceedings).

[FKN80] FUCHS H., KEDEM Z. M., NAYLOR B. F.: On

visible surface generation by a priori tree structures. In

ACM SIGGRAPH 1980 Conference Proceedings (1980),

pp. 124–133.

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point

set surfaces. ACM Transactions on Graphics 26, 23

(2007), 23. (SIGGRAPH 2007 Conference Proceedings).

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MC-

DONALD J., STUETZLE W.: Surface reconstruction from

unorganized points. In ACM SIGGRAPH 1992 Confer-

ence Proceedings (1992), pp. 71–78.

[HLZ∗09] HUANG H., LI D., ZHANG H., ASCHER U.,

COHEN-OR D.: Consolidation of unorganized point

clouds for surface reconstruction. ACM Transactions on

Graphics 28, 5 (2009), 176. (SIGGRAPH Asia 2009 Con-

ference Proceedings).

[HWC∗05] HO C.-C., WU F.-C., CHEN B.-Y., CHUANG

Y.-Y., OUHYOUNG M.: Cubical marching squares:

Adaptive feature preserving surface extraction from vol-

ume data. Computer Graphics Forum 24, 3 (2005), 537–

545.

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN

J.: Dual contouring of hermite data. ACM Transactions

on Graphics 21, 3 (2002), 339–346.

[JR09] JALBA A. C., ROERDINK J. B. T. M.: Efficient

surface reconstruction from noisy data using regularized

membrane potentials. IEEE Transactions on Image Pro-

cessing 18, 5 (2009), 1119–1134.

[JT80] JACKINS C. L., TANIMOTO S. L.: Oct-trees and

their use in representing three-dimensional objects. Com-

puter Graphics and Image Processing 14, 3 (1980), 249–

270.

[Kaz05] KAZHDAN M.: Reconstruction of solid models

from oriented point sets. In Proceedings of the 2008 Eu-

rographics Symposium on Geometry Processing (2005),

p. 73.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Pois-

son surface reconstruction. In Proceedings of the

2006 Eurographics Symposium on Geometry Processing

(2006), pp. 61–70.

[KBSS01] KOBBELT L. P., BOTSCH M., SCHWANECKE

U., SEIDEL H.-P.: Feature sensitive surface extraction

from volume data. In ACM SIGGRAPH 2001 Conference

Proceedings (2001), pp. 57–66.

[KKDH07] KAZHDAN M., KLEIN A., DALAL K.,

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Chen et al. / Binary Orientation Trees

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: MPU implicit surfaces based on the BOTs shown through (e) to (h), which are reconstructed from the (a) DINOSAUR,

(b) RABBIT, (c) IGEA and (d) SANTA data sets. The particles (shown in blue) used for visibility checks are rendered with the

input data points (shown in gray).

HOPPE H.: Unconstrained isosurface extraction on ar-

bitrary octrees. In Proc. of the 2007 Eurographics Sym-

posium on Geometry Processing (2007), pp. 125–133.

[KTB07] KATZ S., TAL A., BASRI R.: Direct visibility of

point sets. ACM Transactions on Graphics 26, 3 (2007),

24. (SIGGRAPH 2007 Conference Proceedings).

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:

A high resolution 3d surface construction algorithm. ACM

SIGGRAPH Computer Graphics 21, 4 (1987), 163–169.

(SIGGRAPH 1987 Conference Proceedings).

[MPS08] MANSON J., PETROVA G., SCHAEFER S.:

Streaming surface reconstruction using wavelets. In Pro-

ceedings of the 2008 Eurographics Symposium on Geom-

etry Processing (2008), pp. 1411–1420.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

G., SEIDEL H.-P.: Multi-level partition of unity implicits.

ACM Transactions on Graphics 22, 3 (2003), 463–470.

(SIGGRAPH 2003 Conference Proceedings).

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Ef-

ficient simplification of point-sampled surfaces. In

IEEE Visualization 2002 Conference Proceedings (2002),

pp. 163–170.

[Sam89] SAMET H.: Quadtree, Octrees, and Other Hier-

archical Methods. Addison Wesley, 1989.

[TO02] TURK G., O’BRIEN J. F.: Modelling with implicit

surfaces that interpolate. ACM Transactions on Graphics

21, 4 (2002), 855–873.

[TRS04] TOBOR I., REUTER P., SCHLICK C.: Multi-

scale reconstruction of implicit surfaces with attributes

from large unorganized point sets. In Proceedings of the

2004 Shape Modeling International (2004), pp. 19–30.

[XMQ04] XIE H., MCDONNEL K. T., QIN H.: Sur-

face reconstruction of noisy and defective data sets. In

IEEE Visualization 2004 Conference Proceedings (2004),

pp. 259–266.

[XWH∗03] XIE H., WANG J., HUA J., QIN H., KAUF-

MAN A.: Piecewise c1 continuous surface reconstruction

of noisy point clouds via local implicit quadric regres-

sion. In IEEE Visualization 2003 Conference Proceedings

(2003), pp. 91–98.

[ZOF01] ZHAO H.-K., OSHER S., FEDKIW R.: Fast sur-

face reconstruction using the level set method. In Pro-

ceedings of the 2001 IEEE Workshop on Variational and

Level Set Methods (2001), pp. 194–201.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.


