
具有物理互動特性之混合形變模型

馬萬鈞
USC ICT

ma@ict.usc.edu

王怡華
國立臺灣大學

always@cmlab.csie.ntu.edu.tw

Graham Fyffe
USC ICT

fyffe@ict.usc.edu

陳炳宇
國立臺灣大學

robin@ntu.edu.tw

Paul Debevec
USC ICT

debevec@ict.usc.edu

ABSTRACT
在本論文中， 我們提出了一種利用質量彈簧系統（mass-
spring system）中改變彈簧靜長度（rest length）來模擬混
合形變模型（blendshape model）的形狀內插變化之新技
術。應用質量彈簧系統來模擬物體的移動與變形，在動畫
模擬的領域裡相當常見，尤其是在模擬粒子、衣物以及紡織
物等物體時更是被大量使用。 而在混合形變模型的領域中，

要找到兩個物體中間的形狀，除了最直覺的線性內差之外，

也還有許多其他方法，但至今尚未有人使用質量彈簧系統來
模擬中間的形狀。將質量彈簧系統導入混合形變模型除了可
以保持原有之形狀內插的特性之外，中間產生出的模型由於
同時具有質量彈簧系統的物理模擬特性，亦可提供與其他物
體之互動使用。 為達此一目的， 我們首先分別將來源模型與
目標模型建構出有一致性的兩個質量彈簧系統（即頂點、邊
以及面都具有相同的拓樸結構）。要產生一個中間的形狀，

我們首先創建一個新的質量彈簧系統，其結構也和來源模型
及目標模型一致， 接著根據不同的權重，將相對應的彈簧做
線性內插以得到一組新的彈簧靜長度。之後再經過計算，便
可找出基於這些內插後，產生的彈簧靜長度在達到平衡時候
的系統狀態。經由類似的步驟，此方法也適用於同時混合多
種形狀。此外，結合適當的碰撞偵測與處理，內插所產出的
中間模型亦可與其他的物體做互動。

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Physically based modeling; I.3.7 [Three-Dimensional
Graphics and Realism]: Animation; I.6.8 [Types of Sim-
ulation]: Animation

1. INTRODUCTION
Shape interpolation, or so-called blendshapes, is a crucial
tool for many applications that requires a continuous geo-
metrical shift between two or more input shapes. Keyframe
animation of 3D characters is one such application. In each
frame of an animation, the vertices are interpolated between

the pre-stored keyframe shapes. Another typical applica-
tion is facial animation. Shapes of different facial expres-
sions, often referred to as key poses, are defined as defor-
mations of the face geometry. A new shape of a desired
expression can be fully or partially blended from those key
poses. Nowadays, shape interpolation is a very common tool
in most of the commercial 3D computer graphics software.
The simplest shape interpolation is carried out through lin-
early interpolating vertex positions from one shape to an-
other. However, the interpolation results are often not sat-
isfactory when the deformation involves with large rotations.
Figure 2(c) illustrates a typical “shrinking” effect observed
when linearly interpolating two shapes (a) and (b) with a
large rotation presents.

In this paper we introduce a new physically-motivated shape
interpolation technique based on mass-spring systems. Our
method seeks to associate shape interpolation with physical-
based deformation. A key observation is that an equilibrium
state of a mass-spring system minimizes local area/volume
distortions through force balancing. As a result, local rigid-
ity can be maintained during the deformation. The method
begins with building a mass-spring system based on the
structure of the input shapes (assuming both of them have
the same topology). Specifically, the mass-spring system
contains with three types of springs: (1) structure springs
that model the elastic nature of the surface, (2) bending
springs that maintain the rigidity of the shape, and (3) in-
ternal springs to approximately preserve volume. We inter-
polate the corresponding rest lengths of the springs based on
the interpolation factor, and solve for the equilibrium state
of the interpolated mass-spring system to produce the final
interpolated shape. The proposed method yields more nat-
ural shape interpolations, which can be seen in Figure 2(d).

Shape interpolation techniques usually do not consider phys-
ical interaction. Any deformation caused by physical in-
teraction has to be prepared with either a new shape that
conforms to the physical interaction, or imitated by a post-
editing process. The former usually is not applicable to arbi-
trary physical interaction otherwise there will be too many
key poses need to be sculpted to accommodate all possi-
ble deformations and the number of key poses is typically
limited. The later requires extra manual efforts or simu-
lations to produce visually-pleasant results. For example,



(a) (b) (c) (d) (e) (f)

Figure 1: The proposed physically-motivated blendshape technique. (a) Source shape. (b) Target shape.
(c-f) Interpolating input shapes while interacting with an obstacle.

(a) (b) (c) (d)

Figure 2: Linear interpolation versus our technique. (a) Source shape. (b) Target shape. (c) Linearly
interpolated result with α = 0.5. (d) Interpolated with the proposed method with the same α.

Borshukov [8] demonstrated both possibilities. Our shape
interpolation method is based on mass-spring system and it
is very straight forward to be associated with physical in-
teraction. It can be easily carried out by applying external
forces or additional constraints on the interpolation.

Our interpolation method is well suited for natural defor-
mations due to the physically-motivated underlying mass-
spring system. Simulating the equilibrium of the vertex po-
sitions is the main computational cost of the technique. The
core computation is solving a sparse linear system, which can
be accelerated with current graphics processor. We demon-
strate our shape interpolation technique with a wide variety
of shapes that exhibit complicated geometry and deforma-
tions.

Contributions. There are two substantial contributions in
our work:

1. A solution which creates natural looking shape inter-
polation results based on the mass-spring systems. The
proposed method requires no geometric analysis, artic-
ulated skeleton, or any manual intervention. Since it
does not require a skeleton to drive the deformation,
and thus is not limited to articulated shapes.

2. Physical interaction can be achieved under the same
framework with additional collision detection and han-
dling.

2. RELATED WORK
Our technique leverages a significant body of works for inter-
polating between shapes in two or three dimensions, mass-
spring systems, and rest length animation.

Shape Interpolation and Deformation. Shape interpo-
lation has been widely used for animating geometric defor-
mation. Linear vertex interpolation (the“blendshapes”tech-
nique) is the most common method for shape interpolation.
However, it suffers from artifacts such as causing the mov-
ing parts (e.g. arms and legs) to shrink and collapse. Shape
interpolation can also be achieved using an articulated skele-
ton. The skeleton may be manually specified [33,35], or au-
tomatically determined by finding near-rigid components of
input shapes [11] or using the medial axis transform [7, 36].
Rohmer et al. [25] proposed a skinning method which ex-
actly preserves (or controls) the volume of an object.

Other methods are free of using an articulated skeleton. One
favorable trend is based on maintaining the rigidity crite-
ria of local geometrical elements, or so-called “as-rigid-as-
possible”. [1] and [14] are typical examples of this method.
Baxter et al. [5] proposed a solution for solving the rota-
tion ambiguity arose from previous as-rigid-as possible ap-
proaches. Winkler et al. [34] interpolated edge lengths and
dihedral angles of the input shapes, followed by a global
multi-registration method to determine the best rigid trans-
formation.

There are also methods that create shape interpolation which
conforms to user manipulation. Barbič et al. [4] proposed
a method for key-frame animation based on an underlying
physically-based simulation, which, similar to our approach,
can also be driven by a mass-spring system. Both their
method and ours compute an equilibrium state as the in-
terpolated result. However, their method interpolates the
deformation forces, which are either provided by a user or
computed automatically based on key poses, but our method
simply interpolates spring rest lengths. Kondo et al. [16]



provided guided animations with dynamics. A user can
have controls over trajectory and deformation. Their tar-
get trajectory is not obtained via proper shape interpola-
tion, but just by pushing the object into next keyframe.
Lewis and Anjyo [18] introduced a direct manipulation method
for blendshape. This approach constrains any desired sub-
set of vertices based on artist’s direct manipulations and
automatically infer the remaining points’ positions. How-
ever, this method only produces shapes that are within the
convex space of the original blendshape poses.

Other related works on shape interpolation or deformation
include [12], which used example shapes to build a reduced
deformable model which controls with mesh-based inverse
kinematics. Teran et al. [30] solved quasi-static states of a
finite element system for simulating deformations of nonlin-
ear elastic materials. We also solve for quasi-static states
and consider interaction with other rigid bodies but we only
balance the mass-spring system with respect to varying the
rest lengths. [19] regards shape interpolation as a scattered
data interpolation problem in an abstract parameter (pose)
space. Our method does not require high dimensional scat-
tered data interpolation and interpolates shape via physical
simulation, presumably requiring fewer input shapes. Kil-
ian et al. [15] presented an isometric deformation method
based on Riemannian geometry, considering shape interpo-
lation as a geodesic curve in shape space. Both techniques
seem to be problematic to provide physical interaction capa-
bility because they are not modeled in the sense of classical
mechanics.

Mass-Spring Systems. Mass-spring systems are com-
monly used for simulating physical behaviors. Generally,
such systems are easy to implement and convenient to in-
tegrate with other techniques, such as collision detection.
Applications that make use of a mass-spring system include
surgical simulation [20], dynamics for animals [21], cloth
[2, 10, 13], muscles [9, 22], and other deformable objects.
Lee et al. [17] applied mass-spring systems to facial anima-
tion using a three-layered mesh to model the anatomy of
human facial tissue. While finite element methods (FEM)
can deliver more sophisticated and physically accurate anal-
ysis, mass-spring systems are attractive due for their low
computational complexity.

Rest Length Animation. The idea of animating a mass-
spring system by varying spring rest lengths is not new.
Most of the methods simulate muscle activation through
controlling the rest length of each spring. Raibert and Hod-
gins [24] used rest length animation to simulate simple leg
locomotion. Adjusting the rest length changes the force at
each spring so that it is able to initiate or terminate its mo-
tion. Tu and Terzopoulos [31] constructed a mass-spring
system of a fish body, and assigned some springs to be mus-
cle springs driven by animated rest lengths. However, these
earlier techniques were not applied to shape interpolation.

3. BLENDING SHAPES WITH SPRING-SPACE
INTERPOLATION

We interpolate shapes in a physically plausible way by inter-
polating the rest length parameters of a mass-spring system.
This interpolation scheme consists of the following compo-
nents:

G0 G1 G2

(0.70, 0.10, 0.20) (0.33, 0.33, 0.33) (0.12, 0.75, 0.12)

Figure 3: Blending between multiple shapes. The
top row shows three source shapes and the bot-
tom row shows blended results with corresponding
weights shown as (w0, w1, w2).

1. Given a set of input shapes, we start by constructing a
mass-spring system based on their common structure.

2. Next, we interpolate rest lengths between two or more
poses to deform the shape by an intermediate mass-
spring system. The interpolated result is the quasi-
static state of the system given the interpolated rest
lengths.

A mass-spring systemM = 〈V,S〉 is defined by a collection
of vertices V = {vi|i = 1...nv} connected by springs S =
{sq|q = 1...ns}. Each spring sq ∈ S connects two vertices
veq0 and veq1 , where eq0 = e(sq, 0) and eq1 = e(sq, 1) and
function e returns the indices of spring sq’s two vertices. We
enforce 1 ≤ eq0 < eq1 ≤ nv. In addition, sq is characterized
by a rest length rq = r(sq) and spring constant kq = k(sq),
where functions r and k return the rest length and spring
constant of spring sq, respectively.

To perform shape interpolation, we first build two consistent
mass-spring systems M0 = 〈V0,S0〉 and M1 = 〈V1,S1〉
from two meshes G0 and G1 which are vertex-wise corre-
spondence and have the same topology. Inherently the two
consistent mass-spring systems have the same structure.

3.1 Solving Intermediate Shapes
The two mass-spring systems are initially set to be in their
equilibrium, therefore r0q =‖ v0eq0 − v0eq1 ‖, and r1q can be
computed similarly. For each α ∈ [0, 1], the interpolated
result from the input shapes is the equilibrium state of a
new mass-spring system M̄ = 〈V̄, S̄〉, where for each spring,

r̄q = (1− α)r0q + αr1q . (1)



In an equilibrium state, the total force f(vi) at each vertex
in the mass-spring system M equals zero:

f(vi) =
∑

j∈n(i)

kq(‖vi − vj‖ − rq)
vi − vj
‖vi − vj‖

= 0, (2)

where function n returns the indices of those vertices that
are adjacent to vi, and spring sq connects vi and vj . Note
that the velocity of each vertex can be ignored since our
formulation is based solely on quasi-static states. We also
assume that each vertex has the same mass, therefore the
mass term can be removed from the equation. To formulate
Eq. (2) into a linear system, first we vectorize V into an one
dimensional vector x as:

x = [x(v1),y(v1), z(v1), · · · ,x(vnv ),y(vnv ), z(vnv )]T ,

where x(vi),y(vi), z(vi) are functions that return the X, Y
and Z Cartesian coordinates of vi. The system is then solved
by using the Newton–Raphson method to determine the first
order approximation of the optimal vertex configuration:

f(xt+1) ≈ f(xt) + J(xt)∆xt, (3)

where xt+1 = xt+∆xt and J(xt) = ∂f
∂x

(xt) is the global stiff-
ness (Jacobian) matrix of f evaluated at the current vertex
positions xt. We are ultimately interested in the equilibrium
state, and that makes f(xt+1) = 0. Eq. (3) now becomes:

J(xt)∆xt = −f(xt). (4)

The non-diagonal elements of the global stiffness matrix Jij
are defined by:

Jij = Jji = −kq

(
I − rq

‖ dij ‖2 I − dijdTij
‖ dij ‖3

)
,

where I is an identity matrix, dij = vi − vj , and spring sq
connects vi and vj ; or else a 3× 3 matrix of zeros if no such
a spring exists. The diagonal elements (i = j) are defined
as:

Jii = −
∑

j∈n(i)

Jij .

Generally matrix J is very sparse. There are both iterative
(e.g. conjugate gradient) and direct methods for solving this
sparse linear system. x0 is initialized as the vertex positions
of source shape V0. We then iteratively solve Eq. (4) until
‖∆xt‖ is smaller than a threshold (M̄ reaches its equilib-
rium). The final vertex positions are then assigned to V̄.

3.2 Blending Multiple Shapes
The proposed method can also be seen as blendshapes in
spring-space. Consequently, many of the capabilities of clas-
sical blendshapes can be easily transfer to our method. For
example, blending between multiple shapes in spring-space
can be easily done by writing the rest length as a convex
linear combination of the spring rest lengths from the input
shapes:

r̄q =

nb∑
i=0

wir
i
q,

where
∑nb

i=0 wi = 1. This is illustrated in Figure 3 where
the interpolated shapes (shown in yellow) are the results
of linearly-blended spring rest lengths from three different
input shapes (shown in blue).

3.3 Boundary Conditions
Boundary conditions must be specified in order to solve the
equilibrium of a mass-spring system. Without setting the
boundary conditions, the system will be under-constrained
and the solution will not be unique. In a mass-spring sys-
tem, boundary conditions are vertices which are fixed. Prac-
tically, this can be achieved by assigning Dirichlet boundary
conditions to the global stiffness matrix, i.e., by replacing the
block of the global stiffness matrix corresponding to bound-
ary vertices with an identity matrix. The entries of the
boundary vertices in f are replaced by zeros to enforce that
the corresponding vertices do not move. A straightforward
(and automatic) method to assign the boundary conditions
is to find vertices which remain static between the source and
target shapes. However, this is unlikely to apply to general
input meshes. Alternatively, certain vertices on the surface
can be manually marked as boundary conditions. During
the interpolation, the positions of the marked vertices are
then simply interpolated linearly. However, we found that
this method often does not yield visually pleasing results,
because these marked vertices still follow a linear trajectory
during interpolation.

A more general method which allows all the surface vertices
to move freely is to use an auxiliary object as an anchor,
whose vertex positions act as the boundary conditions. For
example, placing a rectangle around the center of mass of
the object would keep this region fixed through the pose
interpolation. We use the following procedure to add an
anchor:

1. Select an anchor position inside the source shape (Fig-
ure 4(a)).

2. When building the topology of the mass-spring system
(as in Section 3), we connect additional springs to the
vertices of the shape and the anchor. All the springs
belonging to the anchor are set as hard constraints
by setting a very large spring constant. This enforces
rigidity during the relaxation detailed in the next step.
In our examples, we use a rectangular plane containing
six springs as an anchor.

3. The rest lengths of the internal springs that connect
surface vertices to the anchor are computed from the
source shape based on the user-assigned anchor po-
sitions. However, The rest lengths of these surface-
anchor springs in the target shape still remains un-
known. We have to determine the location of the an-
chor first. One possible solution is to reverse the roles
of anchor and shape, i.e., we set all the vertices in the
target shape as the boundary conditions, and copy the
rest lengths of the springs connecting the anchor to the
source, then determine the positions of anchor vertices
within the target shape by solving the equilibrium.

4. Once the locations of the anchors are known, we can
determine an optimal rigid transformation T = {R|t}
between the anchors of the source and target shapes
such that p1i = Rp0i + t, where p0i and p1i are the po-
sitions of the source and target anchors’ vertices, re-
spectively.

5. For each step during the shape interpolation, we move
the anchor according to the linearly-interpolated rigid



(a) (b) (c)

Figure 4: Using an internal anchor for boundary
conditions. (a) A source shape with an anchor ob-
ject (a rectangle plane, shown in red) inside. (b)
The interpolated result. The vertices of the anchor
act as the boundary conditions during the spring re-
laxation, making all the surface vertices move. (c)
The interpolated result with a rigid transformation
applied.

transformation T ′ = {q(I, R, α)|αt}, where q is the
function that interpolates the identity matrix I and
the rotation matrix R with a weight α using quater-
nions [28]. We subsequently fix the interpolated an-
chor vertices as the boundary conditions and compute
the equilibrium state of the mass-spring system. To
improve numerical stability, we solve for the equilib-
rium in the local coordinate frame of the (initial) an-
chor. Afterwards, we reapply the rigid transformation
to both the anchor and the shape. This is illustrated
in Figure 4.

3.4 Structure, Bending and Internal Springs
We formulate the mass-spring system as a combination of
structure springs and bending springs (similar to [10]). The
structure springs model the elastic properties of the ob-
ject’s surface, connecting neighboring vertices. The bend-
ing springs define the bending and flexural properties of
the material, and connect a vertex to secondary neighbor-
ing vertices (i.e., at a distance of 2). These bending springs
help maintain the object’s resting shape and preserve surface
curvature. In addition, we may add springs, or even extra
vertices, inside the shape to help preserve volume and pre-
vent the shape from collapsing on itself. Otherwise a large
surface tends to be crumpled due to insufficient numerical
precision. Constrained Delaunay tetrahedralization [29] is
a good method for determining internal springs. To pre-
vent springs with long rest lengths we can perform mesh
refinement by inserting new vertices. Those vertices have to
be added to all the input shapes correspondingly. Certain
additional vertices that are inside the input shapes can be
assigned as an anchor as described in Section 3.3.

3.5 Spring Constants
The proposed shape interpolation method guarantees its re-
sults reach both of the input shapes as rest states of M̄i.
However, having a uniform spring constant for every spring
leads to the problem that longer springs may have larger
influences (e.g. generate larger force) at each step of the in-
terpolation. To counterbalance this effect, we set the spring
constant to be inversely proportional to the rest length:

kq ∝
1

rq
.

Figure 5: Physical interactions. The top row shows
the original interpolation. The bottom row shows
the same interpolation while a vertex is pulled away
from the face. Parts of the mesh boundary are fixed
as boundary conditions.

The strategy ensures every spring, no matter what its rest
length is, contributes similar amount of force during the in-
terpolation process.

4. PHYSICAL INTERACTION
Since the interpolation framework is based on physical-based
simulation (mass-spring system), our method is able to phys-
ically interact with other objects during the interpolation.
During each interpolation step, we perform collision detec-
tion between the mass-spring system and obstacles. An
axis-aligned bounding box (AABB) tree structure is built
for both objects to accelerate the detection. The following
procedures are executed once collisions are reported:

1. Move the intersecting vertices back to the surface of
the obstacle according to the penetration normals.

2. Enforce all the intersecting vertices as additional bound-
ary conditions. However, sometimes the deformation
might be too large such that both surface and inter-
nal vertices (as described in Section 3.4) are involved
in the intersection. In this case, we only use surface
vertices as the boundary conditions.

3. Recompute the equilibrium state.

We only apply detection for the surface vertices (not internal
vertices), so that the internal vertices never become fixed
due to a collision and fail to preserve the internal structure.
This produces a result which preserves the original shape’s
features as much as possible, while respecting to the collision
constraints. Figures 1 and 5 show the results after physical
interaction being applied.

5. RESULTS
Figure 6 shows five set of interpolated shapes (yellow) from
selected interpolation steps between the input shapes (blue).
The supplemental video provides additional examples of our
technique. Our interpolation method can reproduce visually
pleasant motions from just a few example shapes (e.g. the



Shape nv ns tCPU tGPU

Man 2.2k 21.6k 2.23 3.62
Face 8.1k 65.1k 40.11 3.67
Cat 7.3k 81.7k 67.58 13.67
Horse 8.5k 96.1k 81.36 15.95
Hand 18.6k 150.4k 153.99 26.28

Table 1: Statistics on the size of the input shapes
and average running time per interpolation step (in
seconds). There are 36 steps for the interpolation
between the source and target for all the experi-
ments. nv: number of vertices (including internal
and anchor vertices), ns: number of springs, tCPU :
running time with the PARDISO solver, tGPU : run-
ning time with the Cusp solver.

opening and closing of the hand). The proposed method
is easier to apply and also provides physical interaction ca-
pabilities. However its computational cost is higher than
as-rigid-as possible methods.

Implementation. A sparse matrix direct solver is required
to solve Eq. (3). We have adopted both PARDISO, a CPU-
based solver [26, 27], and Cusp, a GPU-based solver [6]. A
good mass-spring system framework can be found at [3]. We
also use SOLID [32] for collision detection. Table 1 lists the
statistics of each shape interpolation. We select a variety of
3D shapes, with the number of vertices range from 2k to 18k.
All the results are generated on a desktop computer with a
2.66GHz Intel Core 2 Quad CPU, an NVIDIA Quadro FX
580 GPU, and 3.0GB main memory. The actual execution
time for each Newton–Raphson step is to a large extent de-
termined by the complexity of the mass-spring system.

Limitations. A mass-spring system may have more than
one equilibrium. This leads to element inversion problem.
We found that the element inversion problem is more likely
to occur if the input shapes contains folds due to self-intersecting
triangles.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel physically-motivated
shape interpolation technique which linearly interpolates the
rest lengths of a mass-spring system. The interpolated shape
is then defined as the equilibrium state of the interpolated
system. Our method requires neither additional geometrical
analysis nor skeleton and interpolates shapes in a straight-
forward but physically plausible way. We showed the effec-
tiveness of the method on a wide variety of shapes exhibiting
natural deformations. The proposed method is capable of
producing fully automated shape interpolation, with low dis-
tortion of surface area and volume. While our method does
not guarantee volume preservation, it still maintains vol-
ume as much as possible due to the internal springs. These
springs are necessary to prevent the shape from collapsing.

Several directions have been thought of for future improve-
ments. The proposed interpolation method is computation-
ally intensive due to the large linear system which must be
solved to determine the equilibrium vertex positions. It is
possible to enforce the positive definiteness of the global stiff-
ness matrix and use a faster conjugate gradient method to

solve the linear system as described in [30]. For physical in-
teraction, we currently used a simplified method for collision
handling (e.g. let the contact vertices be fixed by assigning
them as the boundary conditions). For better simulation we
should consider modeling friction force. We would also like
to investigate the effect of heterogeneous spring constants
that is analogous to [23].

7. REFERENCES
[1] M. Alexa, D. Cohen-Or, and D. Levin.

As-rigid-as-possible shape interpolation. In ACM
SIGGRAPH 2000 Conference Proceedings, pages
157–164, 2000.

[2] D. Baraff and A. Witkin. Large steps in cloth
simulation. In ACM SIGGRAPH 1998 Conference
Proceedings, pages 43–54, 1998.

[3] J. Barbič. Computer graphics research code: 3D
mass-spring system, 2009.
//www-bcf.usc.edu/~jbarbic/code/.

[4] J. Barbič, M. da Silva, and J. Popović. Deformable
object animation using reduced optimal control. ACM
Transactions on Graphics, 28(3):53:1–53:9, 2009.
(SIGGRAPH 2009 Conference Proceedings).

[5] W. Baxter, P. Barla, and K. Anjyo. Rigid shape
interpolation using normal equations. In Proceedings
of the 6th International Symposium on
Non-Photorealistic Animation and Rendering, pages
59–64, 2008.

[6] N. Bell and M. Garland. Cusp: Generic parallel
algorithms for sparse matrix and graph computations,
2010. //cusp-library.googlecode.com/.

[7] J. Bloomenthal. Medial-based vertex deformation. In
Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 147–151, 2002.

[8] G. Borshukov. Making of the superpunch. In ACM
SIGGRAPH 2005 Courses, pages 19:1–19:3, 2005.

[9] J. E. Chadwick, D. R. Haumann, and R. E. Parent.
Layered construction for deformable animated
characters. ACM SIGGRAPH Computer Graphics,
23(4):243–252, 1989. (SIGGRAPH 1989 Conference
Proceedings).

[10] K.-J. Choi and H.-S. Ko. Stable but responsive cloth.
In ACM SIGGRAPH 2002 Conference Proceedings,
pages 604–611, 2002.

[11] H.-K. Chu and T.-Y. Lee. Multiresolution mean shift
clustering algorithm for shape interpolation. IEEE
Transactions on Visualization and Computer
Graphics, 15(5):853–866, 2009.

[12] K. G. Der, R. W. Sumner, and J. Popović. Inverse
kinematics for reduced deformable models. ACM
Transactions on Graphics, 25(3):1174–1179, 2006.
(SIGGRAPH 2006 Conference Proceedings).

[13] M. Desbrun, P. Schröder, and A. Barr. Interactive
animation of structured deformable objects. In
Proceedings of the Graphics Interface 1999, pages 1–8,
1999.

[14] T. Igarashi, T. Moscovich, and J. F. Hughes.
As-rigid-as-possible shape manipulation. ACM
Transactions on Graphics, 24(3):1134–1141, 2005.
(SIGGRAPH 2005 Conference Proceedings).

[15] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric



modeling in shape space. ACM Transactions on
Graphics, 26(3):64:1–64:8, 2007. (SIGGRAPH 2007
Conference Proceedings).

[16] R. Kondo, T. Kanai, and K.-i. Anjyo. Directable
animation of elastic objects. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 127–134, 2005.

[17] Y. Lee, D. Terzopoulos, and K. Waters. Realistic
modeling for facial animation. In ACM SIGGRAPH
1995 Conference Proceedings, pages 55–62, 1995.

[18] J. P. Lewis and K.-i. Anjyo. Direct manipulation
blendshapes. IEEE Computer Graphics and
Applications, 30(4):42–50, 2010.

[19] J. P. Lewis, M. Cordner, and N. Fong. Pose space
deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In ACM SIGGRAPH
2000 Conference Proceedings, pages 165–172, 2000.

[20] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. A
survey of surgical simulation: applications, technology,
and education. Presence: Teleoperators and Virtual
Environments, 12(6):599–614, 2003.

[21] G. S. P. Miller. The motion dynamics of snakes and
worms. ACM SIGGRAPH Computer Graphics,
22(4):169–173, 1988. (SIGGRAPH 1988 Conference
Proceedings).

[22] L. P. Nedel and D. Thalmann. Real time muscle
deformations using mass-spring systems. In
Proceedings of the Computer Graphics International
1998, pages 156–165, 1998.

[23] T. Popa, D. Julius, and A. Sheffer. Material-aware
mesh deformations. In Proceedings of the 2006 IEEE
International Conference on Shape Modeling and
Applications, page 22, 2006.

[24] M. H. Raibert and J. K. Hodgins. Animation of
dynamic legged locomotion. ACM SIGGRAPH
Computer Graphics, 25(4):349–358, 1991.
(SIGGRAPH 1991 Conference Proceedings).

[25] D. Rohmer, S. Hahmann, and M.-P. Cani. Exact
volume preserving skinning with shape control. In
Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 83–92, 2009.

[26] O. Schenk, M. Bollhofer, and R. A. Roemer. On
large-scale diagonalization techniques for the
Anderson model of localization. SIAM Journal on
Scientific Computing, 28(3):963–983, 2006.

[27] O. Schenk, A. Wächter, and M. Hagemann.
Matching-based preprocessing algorithms to the
solution of saddle-point problems in large-scale
nonconvex interior-point optimization. In Journal of
Computational Optimization and Applications,
volume 36, pages 321–341, 2007.

[28] K. Shoemake. Animating rotation with quaternion
curves. ACM SIGGRAPH Computer Graphics,
19(3):245–254, 1985. (SIGGRAPH 1985 Conference
Proceedings).

[29] H. Si and K. Gärtner. Meshing piecewise linear
complexes by constrained delaunay
tetrahedralizations. In Proceedings of the 14th
International Meshing Roundtable, pages 147–163,
2005.

[30] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust

quasistatic finite elements and flesh simulation. In
Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 181–190, 2005.

[31] X. Tu and D. Terzopoulos. Artificial fishes: physics,
locomotion, perception, behavior. In ACM
SIGGRAPH 1994 Conference Proceedings, pages
43–50, 1994.

[32] G. van den Bergen. SOLID: Software library for
interference detection, 2004.
//www.win.tue.nl/~gino/solid/.

[33] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman.
Context-aware skeletal shape deformation. Computer
Graphics Forum, 26(3), 2007. (Eurographics 2007
Conference Proceedings).

[34] T. Winkler, J. Drieseberg, M. Alexa, and
K. Hormann. Multi-scale geometry interpolation.
Computer Graphics Forum, 29(2):309–318, 2010.
(Eurographics 2010 Conference Proceedings).

[35] H.-B. Yan, S. Hu, R. R. Martin, and Y.-L. Yang.
Shape deformation using a skeleton to drive simplex
transformations. IEEE Transactions on Visualization
and Computer Graphics, 14(3):693–706, 2008.

[36] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel.
Free-form skeleton-driven mesh deformations. In
Proceedings of the 8th ACM Symposium on Solid
Modeling and Applications, pages 247–253, 2003.



Figure 6: Results of shape interpolation using the proposed method. The input shapes are blue, while
interpolated shapes are yellow. Table 1 lists the number of vertices, number of springs, and timings for each
shape. The set of hand shapes in the second row is identical to the one used in Figure 1.


