
Game Programming

Robin Bing-Yu Chen
National Taiwan University



Game Geometry
o Graph and Meshes
o Surface Properties
o Bounding Volumes
o Spatial Partitioning
o Level-of-Details

1



Standard Graph Definitions

2

G=<V,E>
V=vertices={A,B,C,D,E,F,G,H,I,J,K,L}
E=edges=
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),

(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}

Vertex degree (valence)=number of edges incident on vertex
Ex. deg(J)=4, deg(H)=2
k-regular graph=graph whose vertices all have degree k

Face: cycle of vertices/edges which cannot be shortened
F=faces=
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),

(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)}



Meshes

3

Mesh: straight-line graph embedded 
in R3

Boundary edge: adjacent to exactly 
one face
Regular edge: adjacent to exactly 
two faces
Singular edge: adjacent to more 
than two faces

Closed Mesh: mesh with no 
boundary edges
Manifold Mesh: mesh with no 
singular edges

Corners Í V x F
Half-edges Í E x F



Orientability

12

Orientation of a face is clockwise or 
anticlockwise order in which its vertices 
and edges are lists

This defines the direction of face normal

Straight line 
graph is 
orientable if 
orientations of its 
faces can be 
chosen so that 
each edge is 
oriented in both
directions

Oriented
F={(L,J,B),(B,C,L),(L,C,I),

(I,K,L),(L,K,J)}

Not Oriented
F={(B,J,L),(B,C,L),(L,C,I),

(L,I,K),(L,K,J)}

x

z G
H

E

C

B

A

D

F

Back Face Culling = Front Facing



Definitions of Triangle Meshes

13

{f1} : { v1 , v2 , v3 }
{f2} : { v3 , v2 , v4 }
…

connectivity

geometry{v1} : (x,y,z)
{v2} : (x,y,z)
…

face attributes{f1} : “skin material”
{f2} : “brown hair”
…

[Hoppe 99’]



Definitions of Triangle Meshes

14

{v2,f1} : (nx,ny,nz) (u,v)
{v2,f2} : (nx,ny,nz) (u,v)
…

corner attributes

{f1} : { v1 , v2 , v3 }
{f2} : { v3 , v2 , v4 }
…

connectivity

geometry{v1} : (x,y,z)
{v2} : (x,y,z)
…

face attributes{f1} : “skin material”
{f2} : “brown hair”
…

[Hoppe 99’]



Mesh Data Structures
o Uses of mesh data:

n Rendering
n Geometry queries

o What are the vertices of face #3?
o Are vertices i and j adjacent?
o Which faces are adjacent face #7?

n Geometry operations
o Remove/add a vertex/face
o Mesh simplification
o Vertex split, edge collapse

o Storage of generic meshes
n hard to implement efficiently

o Assume: orientable, manifold and triangular

18



Storing Mesh Data
o How “good” is a data structure?

n Time to construct – preprocessing
n Time to answer a query
n Time to perform an operation

o update the data structure
n Space complexity
n Redundancy

19



1. List of Faces
o List of vertices (coordinates)

o List of faces
n triplets of pointers to face vertices (c1,c2,c3)

o Queries:
n What are the vertices of face #3?

o O(1) – checking the third triplet
n Are vertices i and j adjacent?

o A pass over all faces is necessary – NOT GOOD

20



1. List of Faces
o Example

f1 f2

f3

f4

v6

v5

v4

v2

v1

v3

vertex coordinate
v1 (x1,y1,z1)
v2 (x2,y2,z2)
v3 (x3,y3,z3)
v4 (x4,y4,z4)
v5 (x5,y5,z5)
v6 (x6,y6,z6)

face vertices (ccw)
f1 (v1,v2,v3)
f2 (v2,v4,v3)
f3 (v3,v4,v6)
f4 (v4,v5,v6)

21



1. List of Faces
o Pros:

n Convenient and efficient (memory wise)
n Can represent non-manifold meshes

o Cons:
n Too simple – not enough information on 

relations between vertices and faces

22



OBJ File Format (simple ver.)
o v x y z
o vn i j k
o f v1 // vn1 v2 // vn2 v3 // vn3

23



2. Adjacency matrix
o View mesh as connected graph
o Given n vertices build nxn matrix of 

adjacency information
n Entry (i,j) is TRUE value if vertices i and j 

are adjacent
o Geometric info

n list of vertex coordinates
o Add faces

n list of triplets of vertex indices (v1,v2,v3)

24



2. Adjacency matrix
o Example

f1 f2

f3

f4

v6

v5

v4

v2

v1

v3
vertex coordinate

v1 (x1,y1,z1)
v2 (x2,y2,z2)
v3 (x3,y3,z3)
v4 (x4,y4,z4)
v5 (x5,y5,z5)
v6 (x6,y6,z6)

face vertices (ccw)
f1 (v1,v2,v3)
f2 (v2,v4,v3)
f3 (v3,v4,v6)
f4 (v4,v5,v6)

v1 v2 v3 v4 v5 v6
v1 1 1
v2 1 1 1
v3 1 1 1 1
v4 1 1 1 1
v5 1 1
v6 1 1 1

25



2. Adjacency matrix
o Queries:

n What are the vertices of face #3?
o O(1) – checking the third triplet of faces

n Are vertices i and j adjacent?
o O(1) – checking adjacency matrix at 

location (i,j)
n Which faces are adjacent of vertex j?

o Full pass on all faces is necessary

26



2. Adjacency matrix
o Pros:

n Information on vertices adjacency
n Stores non-manifold meshes

o Cons:
n Connects faces to their vertices, BUT NO 

connection between vertex and its face

27



3. DCEL
(Doubly-Connected Edge List)

o Record for each face, edge and vertex
n Geometric information
n Topological information
n Attribute information

o aka Half-Edge Structure

28



3. DCEL
o Vertex record:

n Coordinates
n Pointer to one half-edge that has v as its origin

o Face record:
n Pointer to one half-edge on its boundary

o Half-edge record:
n Pointer to its origin, origin(e)
n Pointer to its twin half-edge, twin(e)
n Pointer to the face it bounds, IncidentFace(e)

o face lies to left of e when traversed from origin 
to destination

n Next and previous edge on boundary of 
IncidentFace(e), next(e) and prev(e)

origin(e)

e

next(e)

tw
in
(e
)prev(e)

IncFace(e)

29



3. DCEL
o Operations supported:

n Walk around boundary of given face
n Visit all edges incident to vertex v

o Queries:
n Most queries are O(1)

30



3. DCEL
o Example

v1

v2

v3
v4

v5

f1

f2
f3e1,1

e2,1

e3,1 e3,2
e4,1

e5,1

e4,2

e6,1

e7,1

vertex coordinate IncidentEdge
v1 (x1,y1,z1) e2,1
v2 (x2,y2,z2) e1,1
v3 (x3,y3,z3) e4,1
v4 (x4,y4,z4) e7,1
v5 (x5,y5,z5) e5,1

face edge
f1 e1,1
f2 e3,2
f3 e4,2

31



3. DCEL
o Example

v1

v2

v3
v4

v5

f1

f2
f3e1,1

e2,1

e3,1 e3,2
e4,1

e5,1

e4,2

e6,1

e7,1

Half-
edge

origin twin Incident
Face

next prev

e3,1 v3 e3,2 f1 e1,1 e2,1
e3,2 v2 e3,1 f2 e4,1 e5,1
e4,1 v3 e4,2 f2 e5,1 e3,2
e4,2 v5 e4,1 f3 e6,1 e7,1

32



3. DCEL
o Pros:

n All queries in O(1) time
n All operations are (usually) O(1)

o Cons:
n Represents only manifold meshes

33



Geometry Data
o Vertex position

n (x, y, z, w)
n in model space or screen space

o Vertex normal
n (nx, ny, nz)

o Vertex color
n (r, g, b) or (diffuse, specular)

o Texture coordinates on vertex
n (u1, v1), (u2, v2), …

o Skin weights
n (bone1, w1, bone2, w2, …)

o Tangent and bi-normal

34

N

T

Bn



Topology Data
o Lines

n Line segments
n Polyline

o Open / closed
o Indexed triangles
o Triangle strips/fans
o Surfaces

n Non-Uniform Rational B-Spline (NURBS)
o Subdivision

35



Indexed Triangles
o Geometric data

n Vertex data
n v0, v1, v2, v3, …
n (x, y, z, nx, ny, nz, tu, tv)
n or (x, y, z, cr, cg, cb, tu, tv, …)

o Topology
n Face v0 v3 v6 v7

o right-hand rule for index

n Edge table
36

v0

v3

v6

v7

polygon normal

vertex normal



Triangle Strips/Fans

37

v0

v1

v2

v3

v4

v5

v6

v7

T0

T1

T2 T3

T4
T5

v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7

Get great performance to use triangle 
strips/fans for rendering on current hardware

v0 , v1 , v2 , v3 , v4 , v5 

v0

v1
v2

v3
v4

v5



Meshes in Unity
o Creating or modifying meshes from 

scripts (if needed.)
o For every vertex, there can be a normal, 

two texture coordinates, color and 
tangent.

o The triangle arrays are simply indices 
into the vertex arrays; three indices for 
each triangle.

o If your mesh has 10 vertices, you would 
also have 10-size arrays for normals and 
other attributes.

38



Meshes in Unity
o Use Mesh Filter and Renderer to set

the form and the way to be displayed.

39



Meshes in Unity
o Building a mesh from scratch

Vector3[] newVertices;
Vector2[] newUV;
int[] newTriangles;

void Start() {
Mesh mesh = new Mesh();
GetComponent<MeshFilter>().mesh = mesh;
mesh.vertices = newVertices;//Should be assigned before triangle index
mesh.uv = newUV;
mesh.triangles = newTriangles;

}

40



Meshes in Unity
o Properties
colors Vertex colors of the Mesh.

colors32 Vertex colors of the Mesh.

normals The normals of the Mesh.

tangents The tangents of the Mesh.

triangles An array containing all triangles in the Mesh.

uv The base texture coordinates of the Mesh.

uv2 ~ uv8 The second ~ eighth texture coordinate set of the mesh, if 
present.

vertexCount Returns the number of vertices in the Mesh (Read Only).

vertices Returns a copy of the vertex positions or assigns a new 
vertex positions array.

41

https://docs.unity3d.com/ScriptReference/Mesh-colors.html
https://docs.unity3d.com/ScriptReference/Mesh-colors32.html
https://docs.unity3d.com/ScriptReference/Mesh-normals.html
https://docs.unity3d.com/ScriptReference/Mesh-tangents.html
https://docs.unity3d.com/ScriptReference/Mesh-triangles.html
https://docs.unity3d.com/ScriptReference/Mesh-uv.html
https://docs.unity3d.com/ScriptReference/Mesh-uv2.html
https://docs.unity3d.com/ScriptReference/Mesh-vertexCount.html
https://docs.unity3d.com/ScriptReference/Mesh-vertices.html


Meshes in Unity
o Public Methods
Clear Clears all vertex data and all triangle indices.

CombineMeshes Combines several Meshes into this Mesh.

GetColors Gets the vertex colors for this instance.

Get…

SetColors Vertex colors of the Mesh.

Set…

RecalculateNormals Recalculates the normals of the Mesh from the triangles 
and vertices.

UploadMeshData Upload previously done Mesh modifications to the 
graphics API.

42

https://docs.unity3d.com/ScriptReference/Mesh.Clear.html
https://docs.unity3d.com/ScriptReference/Mesh.CombineMeshes.html
https://docs.unity3d.com/ScriptReference/Mesh.GetColors.html
https://docs.unity3d.com/ScriptReference/Mesh.GetColors.html
https://docs.unity3d.com/ScriptReference/Mesh.SetColors.html
https://docs.unity3d.com/ScriptReference/Mesh.SetColors.html
https://docs.unity3d.com/ScriptReference/Mesh.RecalculateNormals.html
https://docs.unity3d.com/ScriptReference/Mesh.UploadMeshData.html


Surface Properties
o Material
o Textures
o Shaders

43



Materials
o Material

n Ambient
o Environment
o Non-lighted area

n Diffuse
o Dynamic lighting

n Emissive
o Self-lighting

n Specular with shineness
o Hi-light
o View-dependent
o Not good for hardware rendering

o Local illumination
44



Textures
o Textures

n Single texture
n Texture coordinate animation
n Texture animation
n Multiple textures
n Alphamap

45

Material or vertex colors

Base color texture

Lightmap



Shaders
o Programmable shading language

n Vertex shader
n Pixel shader

o Procedural way to implement some process 
of rendering
n Transformation
n Lighting
n Texturing
n BRDF
n Rasterization
n Pixel fill-in
n Post-processing for rendering

46



Powered by Shaders
o Per-pixel lighting
o Motion blur
o Volume / Height fog
o Volume lines
o Depth of field
o Fur rendering
o Reflection / Refraction
o NPR
o Shadow
o Linear algebra operators
o Perlin noise
o Quaternion
o Sparse matrix solvers
o Skin bone deformation
o Normal map
o Displacement map
o Particle shader
o Procedural Morphing
o Water Simulation

48



Surface Properties in Unity

50

Material

Texture

Shaders



Bounding Volumes
o Bounding sphere
o Bounding cylinder
o Axis-aligned bounding box (AABB)
o Oriented bounding box (OBB)
o Discrete oriented polytope (k-DOP) 

51

Bounding Sphere AABB

OBB

k-DOP

Bounding Cylinder



Bounding Volume - Application
o Collision detection
o Visibility culling
o Hit test
o Steering behavior

n in “Game AI”

52



Application Example –
Bounding Sphere

53

Bounding sphere B1(c1, r1), B2(c2, r2)

If the distance between two bounding spheres is
larger than the sum of radius of the spheres, than
these two objects have no chance to collide.

D > Sum(r1, r2)

D

B1

B2

c1

c2



Application Example - AABB
o Axis-aligned bounding box (AABB)

n Simplified calculation using axis-
alignment feature

n But need run-timely to track the 
bounding box

54

AABB



Application Example - OBB
o Oriented bounding box (OBB)

n Need intersection calculation using the 
transformed OBB geometric data
o 3D containment test
o Line intersection with plane

o For games, J

55

OBB



Colliders in Unity
o BoxCollider
o SphereCollider
o CapsuleCollider
o MeshCollider

o If the object with the Collider needs to be 
moved during gameplay, then you should 
also attach a Rigidbody component to the 
object. 

o The Rigidbody can be set to be kinematic, if 
you don't want the object to have physical 
interaction with other objects.

56



Colliders in Unity

57



Colliders as Triggers in Unity
o Trigger events are only sent if one of 

the Colliders also has a Rigidbody
attached.

o Trigger events will be sent to disabled
MonoBehaviours, to allow enabling
Behaviours in response to collisions.

o Triggers are only supported on 
convex colliders.

58



Colliders in Unity
o Messages
OnCollisionEnter OnCollisionEnter is called when this collider/rigidbody has 

begun touching another rigidbody/collider.

OnCollisionExit OnCollisionExit is called when this collider/rigidbody has 
stopped touching another rigidbody/collider.

OnCollisionStay OnCollisionStay is called once per frame for every 
collider/rigidbody that is touching rigidbody/collider.

OnTriggerEnter OnTriggerEnter is called when the Collider other enters the 
trigger.

OnTriggerExit OnTriggerExit is called when the Collider other has stopped 
touching the trigger.

OnTriggerStay

OnTriggerStay is called almost all the frames for every 
Collider other that is touching the trigger. The function is 
on the physics timer so it won't necessarily run every 
frame.

59

https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html
https://docs.unity3d.com/ScriptReference/Collider.OnCollisionExit.html
https://docs.unity3d.com/ScriptReference/Collider.OnCollisionStay.html
https://docs.unity3d.com/ScriptReference/Collider.OnTriggerEnter.html
https://docs.unity3d.com/ScriptReference/Collider.OnTriggerExit.html
https://docs.unity3d.com/ScriptReference/Collider.OnTriggerStay.html


Colliders in Unity

60

void OnCollisionEnter(Collision collision) {
// Show ContactPoint
foreach (ContactPoint contact in collision.contacts) {

Debug.DrawRay(contact.point, contact.normal,
Color.white);

}

// Play a sound when a collision occurs
if (collision.relativeVelocity.magnitude > 2)

audioSource.Play();
}



Ray Casting

61

Window

Center of
projection



Spatial Partitioning

62



Spatial Partitioning

63

R

A B

C



Spatial Partitioning

64

1

23

A

B



Space Subdivision Approaches

65

Uniform grid K-d tree



Space Subdivision Approaches

66

Quadtree (2D)
Octree (3D)

BSP tree



Uniform Grid

67



Uniform Grid

Preprocess scene
1. Find bounding box

68



Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution

69



Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its 

bounding box overlaps the 
cell

70



Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its 

bounding box overlaps 
the cell

4. Check that object 
overlaps cell (expensive!)

71



Uniform Grid Traversal

Preprocess scene
Traverse grid

3D line = 3D-DDA

72



From Uniform Grid to Quadtree

73



Quadtree (Octrees)

74subdivide the space adaptively



Quadtree Data Structure

75

Quadrant Numbering



Quadtree Data Structure

76

Quadrant Numbering



Quadtree Data Structure

77

Quadrant Numbering



Quadtree Data Structure

78

Quadrant Numbering



From Quadtree to Octree

79

x

y

z



A

A

Leaf nodes correspond to unique regions in space

K-d Tree

80



Leaf nodes correspond to unique regions in space

A

A

B

K-d Tree

81



Leaf nodes correspond to unique regions in space

A

B

A

B

K-d Tree

82



A

B

A

B

C

K-d Tree

83



A

B

C A

B

C

K-d Tree

84



A

B

C A

B

C

D

K-d Tree

85



A

B

C

D

A

B

C

D

K-d Tree

86



A

B C

D

A

B

C

D

Leaf nodes correspond to unique regions in space

K-d Tree

87



A

B C

D

A

B

C

D

Leaf nodes correspond to unique regions in space

K-d Tree Traversal

88



Binary Space-Partitioning Trees

90

T1

T2

T2 T3

T1 +-

T3



Binary Space-Partitioning Trees

91

T1

T2
T3

T3

T1 +-

T2 +-



Splitting triangles

92

a

b

c

A

B

a

b

c

A

B



3

4

1

2

56

7

9

8

11

10

BSP Tree

97



3

4

1

2

56

7

1

inside
ones

outside
ones

9

8

11

10

BSP Tree

98



3

4

1

2

56

7

1

2
3
4

5
6
7
8
9
10
11

9

8

11

10

BSP Tree

99



3

4

1

2

9

8

11

10

56

7

9b

9a

1

5

6
7
9a
10
11a11a

11b
8
9b
11b

BSP Tree

100



3

4

1

2

9

8

11

10

56

7

9b

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree

101



3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree

102



3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree Traversal

103



1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

3

4

BSP Tree Traversal

104



Level-of-Details
o Discrete LOD

n Switch multiple resolution models run-
timely

o Continuous LOD
n Use progressive mesh to dynamically 

reduce the rendered polygons
o View-dependent LOD

n Basically for terrain

105



Level of Detail: 
The Basic Idea

o One solution:
n Simplify the polygonal geometry of small 

or distant objects
n Known as Level of Detail or LOD

o a.k.a. polygonal simplification, geometric 
simplification, mesh reduction, 
multiresolution modeling, …

106



Level of Detail:
Traditional Approach

o Create levels of detail (LODs) of 
objects:

107

69,451 polys 2,502 polys 251 polys 76 polys



Level of Detail:
Traditional Approach

o Distant objects use coarser LODs:

108



Traditional Approach: 
Discrete Level of Detail

o Traditional LOD in a nutshell:
n Create LODs for each object separately 

in a preprocess
n At run-time, pick each object’s LOD 

according to the object’s distance (or 
similar criterion)

o Since LODs are created offline at 
fixed resolutions, this can be referred 
as Discrete LOD

109



Discrete LOD:
Advantages

o Simplest programming model; 
decouples simplification and 
rendering
n LOD creation need not address real-time 

rendering constraints
n Run-time rendering need only pick LODs

110



Discrete LOD:
Advantages

o Fits modern graphics hardware well
n Easy to compile each LOD into triangle 

strips, display lists, vertex arrays, …
n These render much faster than 

unorganized polygons on today’s 
hardware (3-5 x)

111



Discrete LOD:
Disadvantages

o So why use anything but discrete LOD?
o Answer: sometimes discrete LOD not 

suited for drastic simplification
o Some problem cases:

n Terrain flyovers
n Volumetric isosurfaces
n Super-detailed range scans
n Massive CAD models

112



Continuous Level of Detail
o A departure from the traditional static 

approach:
n Discrete LOD: create individual LODs in a 

preprocess
n Continuous LOD: create data structure 

from which a desired level of detail can 
be extracted at run time.

117



Continuous LOD:
Advantages

o Better granularity à better fidelity
n LOD is specified exactly, not chosen from 

a few pre-created options
n Thus objects use no more polygons than 

necessary, which frees up polygons for 
other objects 

n Net result: better resource utilization, 
leading to better overall fidelity/polygon

118



Continuous LOD:
Advantages

o Better granularity à smoother 
transitions
n Switching between traditional LODs can 

introduce visual “popping” effect
n Continuous LOD can adjust detail 

gradually and incrementally, reducing 
visual pops
o Can even geomorph the fine-grained 

simplification operations over several 
frames to eliminate pops [Hoppe 96, 98]

119



Continuous LOD:
Advantages

o Supports progressive transmission
n Progressive Meshes [Hoppe 97]
n Progressive Forest Split Compression [Taubin 98]

o Leads to view-dependent LOD
n Use current view parameters to select 

best representation for the current view
n Single objects may thus span several 

levels of detail

120



Methodology
o Sequence of local operations

n Involve near neighbors - only small 
patch affected in each operation

n Each operation introduces error
n Find and apply operation which 

introduces the least error 

121



Simplification Operations
o Decimation

n Vertex removal
o v ← v-1
o f ← f-2

n Remaining vertices - subset of original 
vertex set

122



Simplification Operations
o Decimation

n Edge collapse
o v ← v-1
o f ← f-2

n Triangle collapse
o v ← v-2
o f ← f-4

n Vertices may move

123



Simplification Error Metrics
o Measures

n Distance to plane
n Curvature

o Usually approximated
n Average plane
n Discrete curvature

125

/ 2a på



The Basic Algorithm
o Repeat

n Select the element with minimal error
n Perform simplification operation

o (remove/contract)
n Update error

o (local/global)

o Until mesh size / quality is achieved

126



Progressive Meshes
o Render a model in different Level-of-Detail at run 

time
o User-controlledly or automatically change the 

percentage of rendered vertices
o Use collapse map to control the simplification 

process

128

Collapse map 

Vertex list

Triangle list

Index 0 1 2 3 4 5 6 7 8

Map 0 1 1 2 3 0 4 5 6

0 1 2 3 4 5 6 7 8

0 2 5 0 1 2 3 5 8

0 0 6

4



Vertex Tree & Active Triangle List
o The Vertex Tree

n represents the entire model
n a hierarchical clustering of vertices
n queried each frame for updated scene

o The Active Triangle List
n represents the current simplification
n list of triangle to be displayed

130



The Vertex Tree
o Each vertex tree node contains:

n a subset of model vertices
n a representative vertex or repvert

o Folding a node collapses its vertices 
to the repvert

o Unfolding a node splits the repvert 
back into vertices

131



Vertex Tree Example

132

Vertex TreeTriangles in Active List

1

2

3

4 5

6

78

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R



Vertex Tree Example

133

Vertex TreeTriangles in Active List

1

2

3

4 5

6

78

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A



Vertex Tree Example

134

Vertex TreeTriangles in Active List

3

4 5

6

8

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A



Vertex Tree Example

135

Vertex TreeTriangles in Active List

3

4 5

6

8

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B



Vertex Tree Example

136

Vertex TreeTriangles in Active List

3

8

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B



Vertex Tree Example

137

Vertex TreeTriangles in Active List

3

8

9

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B

C



Vertex Tree Example

138

Vertex TreeTriangles in Active List

3

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B

C



Vertex Tree Example

139

Vertex TreeTriangles in Active List

3

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B

C

II



Vertex Tree Example

140

Vertex TreeTriangles in Active List

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B

II



Vertex Tree Example

141

Vertex TreeTriangles in Active List

10

1 2

3

4 5 67 8 9

10 A B C

I II

R

A

B

II I



Vertex Tree Example

142

Vertex TreeTriangles in Active List

1 2

3

4 5 67 8 9

10 A B C

I II

R

B

II I



Vertex Tree Example

143

Vertex TreeTriangles in Active List

1 2

3

4 5 67 8 9

10 A B C

I II

R

B

II I

R



Vertex Tree Example

144

Vertex TreeTriangles in Active List

1 2

3

4 5 67 8 9

10 A B C

I II

R

R



The Vertex Tree:
Folding & Unfolding

145

1

2

3

4 5

6

78

9

10

A

3

4 5

6

8

9

10

A

Fold node A

Unfold node A



LOD in Unity
o Mesh setting

n Setting each level of mesh renderer

148



LOD in Unity
o Mesh setting

n Setting each level of mesh renderer

149



LOD in Unity
o Mesh setting

n Setting each level of mesh renderer

150



LOD in Unity
o Terrain setting

151


